|
| 1 | +function test_line_model(::Type{S}) where {S} |
| 2 | + nlp = BROWNDEN(S) |
| 3 | + n = nlp.meta.nvar |
| 4 | + x = nlp.meta.x0 |
| 5 | + d = fill!(S(undef, n), -1) |
| 6 | + lm = LineModel(nlp, x, d) |
| 7 | + g = fill!(S(undef, n), 0) |
| 8 | + |
| 9 | + T = eltype(S) |
| 10 | + @test obj(lm, zero(T)) == obj(nlp, x) |
| 11 | + @test grad(lm, zero(T)) == dot(grad(nlp, x), d) |
| 12 | + @test grad!(lm, zero(T), g) == dot(grad(nlp, x), d) |
| 13 | + @test g == grad(nlp, x) |
| 14 | + @test derivative(lm, zero(T)) == dot(grad(nlp, x), d) |
| 15 | + @test derivative!(lm, zero(T), g) == dot(grad(nlp, x), d) |
| 16 | + @test g == grad(nlp, x) |
| 17 | + @test objgrad!(lm, one(T), g) == (obj(nlp, x + d), dot(grad(nlp, x + d), d)) |
| 18 | + @test g == grad(nlp, x + d) |
| 19 | + @test objgrad(lm, zero(T)) == (obj(nlp, x), dot(grad(nlp, x), d)) |
| 20 | + @test hess(lm, zero(T)) ≈ dot(d, hess(nlp, x) * d) |
| 21 | + @test hess!(lm, zero(T), g) == dot(d, hprod!(nlp, x, d, g)) |
| 22 | + |
| 23 | + @test obj(lm, one(T)) == obj(nlp, x + d) |
| 24 | + @test grad(lm, one(T)) == dot(grad(nlp, x + d), d) |
| 25 | + @test hess(lm, one(T)) ≈ dot(d, hess(nlp, x + d) * d) |
| 26 | + |
| 27 | + @test neval_obj(lm) == 4 |
| 28 | + @test neval_grad(lm) == 7 |
| 29 | + @test neval_hess(lm) == 3 |
| 30 | +end |
| 31 | + |
| 32 | +function test_armijo_wolfe(::Type{S}) where {S} |
| 33 | + T = eltype(S) |
| 34 | + x0 = fill!(S(undef, 2), 1) |
| 35 | + nlp = ADNLPModel(x -> x[1]^2 + 4 * x[2]^2, x0, matrix_free = true) |
| 36 | + d = fill!(S(undef, 2), -1) |
| 37 | + lm = LineModel(nlp, nlp.meta.x0, d) |
| 38 | + g = fill!(S(undef, 2), 0) |
| 39 | + |
| 40 | + t0 = zero(T) |
| 41 | + t, good_grad, ft, nbk, nbW = armijo_wolfe(lm, obj(lm, t0), grad(lm, t0), g) |
| 42 | + @test t == 1 |
| 43 | + @test ft == 0 |
| 44 | + @test nbk == 0 |
| 45 | + @test nbW == 0 |
| 46 | + |
| 47 | + redirect!(lm, nlp.meta.x0, fill!(S(undef, 2), -1 // 2)) |
| 48 | + t, good_grad, ft, nbk, nbW = armijo_wolfe(lm, obj(lm, t0), grad(lm, t0), g) |
| 49 | + @test t == 1 |
| 50 | + @test ft == 1.25 |
| 51 | + @test nbk == 0 |
| 52 | + @test nbW == 0 |
| 53 | + |
| 54 | + redirect!(lm, nlp.meta.x0, fill!(S(undef, 2), -2)) |
| 55 | + t, good_grad, ft, nbk, nbW = armijo_wolfe(lm, obj(lm, t0), grad(lm, t0), g) |
| 56 | + @test t < 1 |
| 57 | + @test nbk > 0 |
| 58 | + @test nbW == 0 |
| 59 | + |
| 60 | + nlp = ADNLPModel(x -> (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2, fill!(S(undef, 2), 0), matrix_free = true) |
| 61 | + d = S([1.7; 3.2]) |
| 62 | + lm = LineModel(nlp, nlp.meta.x0, d) |
| 63 | + t, good_grad, ft, nbk, nbW = armijo_wolfe(lm, obj(lm, t0), grad(lm, t0), g) |
| 64 | + @test t < 1 |
| 65 | + @test nbk > 0 |
| 66 | + @test nbW > 0 |
| 67 | +end |
| 68 | + |
| 69 | +function test_armijo_goldstein(::Type{S}) where {S} |
| 70 | + T = eltype(S) |
| 71 | + nlp = ADNLPModel(x -> x[1]^2 + 4 * x[2]^2, fill!(S(undef, 2), 1)) |
| 72 | + lm = LineModel(nlp, nlp.meta.x0, fill!(S(undef, 2), -1)) |
| 73 | + |
| 74 | + t0 = zero(T) |
| 75 | + t, ft, nbk, nbG = armijo_goldstein(lm, obj(lm, t0), grad(lm, t0)) |
| 76 | + @test t == 1 |
| 77 | + @test ft == zero(T) |
| 78 | + @test nbk == 0 |
| 79 | + @test nbG == 0 |
| 80 | + |
| 81 | + redirect!(lm, nlp.meta.x0, fill!(S(undef, 2), -1 // 2)) |
| 82 | + t, ft, nbk, nbG = armijo_goldstein(lm, obj(lm, t0), grad(lm, t0)) |
| 83 | + @test t == 1 |
| 84 | + @test ft == 1.25 |
| 85 | + @test nbk == 0 |
| 86 | + @test nbG == 0 |
| 87 | + |
| 88 | + redirect!(lm, nlp.meta.x0, fill!(S(undef, 2), -2)) |
| 89 | + t, ft, nbk, nbG = armijo_goldstein(lm, obj(lm, t0), grad(lm, t0)) |
| 90 | + @test t < 1 |
| 91 | + @test nbk > 0 |
| 92 | + @test nbG == 0 |
| 93 | +end |
| 94 | + |
| 95 | +function test_armijo_goldstein2(::Type{S}) where {S} |
| 96 | + T = eltype(S) |
| 97 | + nlp = ADNLPModel(x -> (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2, fill!(S(undef, 2), 0)) |
| 98 | + lm = LineModel(nlp, nlp.meta.x0, S([1.7; 3.2])) |
| 99 | + |
| 100 | + t0 = zero(T) |
| 101 | + t, ft, nbk, nbG = |
| 102 | + armijo_goldstein(lm, obj(lm, t0), grad(lm, t0); t = T(1), τ₀ = T(0.1), τ₁ = T(0.2)) |
| 103 | + @test t < one(T) |
| 104 | + @test nbk == 4 |
| 105 | + @test nbG == 10 |
| 106 | + |
| 107 | + t, ft, nbk, nbG = armijo_goldstein( |
| 108 | + lm, |
| 109 | + obj(lm, t0), |
| 110 | + grad(lm, t0); |
| 111 | + t = T(0.001), |
| 112 | + τ₀ = T(0.1), |
| 113 | + τ₁ = T(0.2), |
| 114 | + ) |
| 115 | + @test t < 1.0 |
| 116 | + @test nbk == 2 |
| 117 | + @test nbG == 10 |
| 118 | +end |
| 119 | + |
1 | 120 | @testset "Linesearch" begin |
2 | 121 | @testset "LineModel" begin |
3 | | - nlp = BROWNDEN() |
4 | | - n = nlp.meta.nvar |
5 | | - x = nlp.meta.x0 |
6 | | - d = -ones(n) |
7 | | - lm = LineModel(nlp, x, d) |
8 | | - g = zeros(n) |
9 | | - |
10 | | - @test obj(lm, 0.0) == obj(nlp, x) |
11 | | - @test grad(lm, 0.0) == dot(grad(nlp, x), d) |
12 | | - @test grad!(lm, 0.0, g) == dot(grad(nlp, x), d) |
13 | | - @test g == grad(nlp, x) |
14 | | - @test derivative(lm, 0.0) == dot(grad(nlp, x), d) |
15 | | - @test derivative!(lm, 0.0, g) == dot(grad(nlp, x), d) |
16 | | - @test g == grad(nlp, x) |
17 | | - @test objgrad!(lm, 1.0, g) == (obj(nlp, x + d), dot(grad(nlp, x + d), d)) |
18 | | - @test g == grad(nlp, x + d) |
19 | | - @test objgrad(lm, 0.0) == (obj(nlp, x), dot(grad(nlp, x), d)) |
20 | | - @test hess(lm, 0.0) ≈ dot(d, hess(nlp, x) * d) |
21 | | - @test hess!(lm, 0.0, g) == dot(d, hprod!(nlp, x, d, g)) |
22 | | - |
23 | | - @test obj(lm, 1.0) == obj(nlp, x + d) |
24 | | - @test grad(lm, 1.0) == dot(grad(nlp, x + d), d) |
25 | | - @test hess(lm, 1.0) ≈ dot(d, hess(nlp, x + d) * d) |
26 | | - |
27 | | - @test neval_obj(lm) == 4 |
28 | | - @test neval_grad(lm) == 7 |
29 | | - @test neval_hess(lm) == 3 |
| 122 | + test_line_model(Vector{Float64}) |
| 123 | + end |
| 124 | + |
| 125 | + if CUDA.functional() |
| 126 | + @testset "LineModel with CuArray" begin |
| 127 | + CUDA.allowscalar() do |
| 128 | + test_line_model(CuVector{Float64}) |
| 129 | + end |
| 130 | + end |
30 | 131 | end |
31 | 132 |
|
32 | 133 | @testset "Armijo-Wolfe" begin |
33 | | - nlp = ADNLPModel(x -> x[1]^2 + 4 * x[2]^2, ones(2)) |
34 | | - lm = LineModel(nlp, nlp.meta.x0, -ones(2)) |
35 | | - g = zeros(2) |
36 | | - |
37 | | - t, good_grad, ft, nbk, nbW = armijo_wolfe(lm, obj(lm, 0.0), grad(lm, 0.0), g) |
38 | | - @test t == 1 |
39 | | - @test ft == 0.0 |
40 | | - @test nbk == 0 |
41 | | - @test nbW == 0 |
42 | | - |
43 | | - redirect!(lm, nlp.meta.x0, -ones(2) / 2) |
44 | | - t, good_grad, ft, nbk, nbW = armijo_wolfe(lm, obj(lm, 0.0), grad(lm, 0.0), g) |
45 | | - @test t == 1 |
46 | | - @test ft == 1.25 |
47 | | - @test nbk == 0 |
48 | | - @test nbW == 0 |
49 | | - |
50 | | - redirect!(lm, nlp.meta.x0, -2 * ones(2)) |
51 | | - t, good_grad, ft, nbk, nbW = armijo_wolfe(lm, obj(lm, 0.0), grad(lm, 0.0), g) |
52 | | - @test t < 1 |
53 | | - @test nbk > 0 |
54 | | - @test nbW == 0 |
55 | | - |
56 | | - nlp = ADNLPModel(x -> (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2, zeros(2)) |
57 | | - lm = LineModel(nlp, nlp.meta.x0, [1.7; 3.2]) |
58 | | - t, good_grad, ft, nbk, nbW = armijo_wolfe(lm, obj(lm, 0.0), grad(lm, 0.0), g) |
59 | | - @test t < 1 |
60 | | - @test nbk > 0 |
61 | | - @test nbW > 0 |
| 134 | + test_armijo_wolfe(Vector{Float64}) |
| 135 | + end |
| 136 | + |
| 137 | + if CUDA.functional() |
| 138 | + @testset "Armijo-Wolfe with CuArray" begin |
| 139 | + CUDA.allowscalar() do |
| 140 | + test_armijo_wolfe(CuVector{Float64}) |
| 141 | + end |
| 142 | + end |
62 | 143 | end |
63 | 144 |
|
64 | 145 | @testset "Armijo-Goldstein" begin |
65 | | - nlp = ADNLPModel(x -> x[1]^2 + 4 * x[2]^2, ones(2)) |
66 | | - lm = LineModel(nlp, nlp.meta.x0, -ones(2)) |
67 | | - |
68 | | - T = Float64 |
69 | | - t, ft, nbk, nbG = armijo_goldstein(lm, obj(lm, 0.0), grad(lm, 0.0)) |
70 | | - @test t == 1 |
71 | | - @test ft == zero(T) |
72 | | - @test nbk == 0 |
73 | | - @test nbG == 0 |
74 | | - |
75 | | - redirect!(lm, nlp.meta.x0, -ones(2) / 2) |
76 | | - t, ft, nbk, nbG = armijo_goldstein(lm, obj(lm, 0.0), grad(lm, 0.0)) |
77 | | - @test t == 1 |
78 | | - @test ft == 1.25 |
79 | | - @test nbk == 0 |
80 | | - @test nbG == 0 |
81 | | - |
82 | | - redirect!(lm, nlp.meta.x0, -2 * ones(2)) |
83 | | - t, ft, nbk, nbG = armijo_goldstein(lm, obj(lm, 0.0), grad(lm, 0.0)) |
84 | | - @test t < 1 |
85 | | - @test nbk > 0 |
86 | | - @test nbG == 0 |
87 | | - |
88 | | - T = Float32 |
89 | | - |
90 | | - nlp = ADNLPModel(x -> (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2, zeros(T, 2)) |
91 | | - lm = LineModel(nlp, nlp.meta.x0, T.([1.7; 3.2])) |
92 | | - t, ft, nbk, nbG = |
93 | | - armijo_goldstein(lm, obj(lm, T(0)), grad(lm, T(0)); t = T(1), τ₀ = T(0.1), τ₁ = T(0.2)) |
94 | | - @test t < one(T) |
95 | | - @test nbk == 4 |
96 | | - @test nbG == 10 |
97 | | - |
98 | | - t, ft, nbk, nbG = armijo_goldstein( |
99 | | - lm, |
100 | | - obj(lm, T(0.0)), |
101 | | - grad(lm, T(0.0)); |
102 | | - t = T(0.001), |
103 | | - τ₀ = T(0.1), |
104 | | - τ₁ = T(0.2), |
105 | | - ) |
106 | | - @test t < 1.0 |
107 | | - @test nbk == 2 |
108 | | - @test nbG == 10 |
| 146 | + @testset "Armijo-Goldstein Float64" begin |
| 147 | + test_armijo_goldstein(Vector{Float64}) |
| 148 | + end |
| 149 | + |
| 150 | + @testset "Armijo-Goldstein Float32" begin |
| 151 | + test_armijo_goldstein2(Vector{Float32}) |
| 152 | + end |
| 153 | + |
| 154 | + if CUDA.functional() |
| 155 | + @testset "Armijo-Goldstein with CuArray" begin |
| 156 | + CUDA.allowscalar() do |
| 157 | + test_armijo_goldstein(CuVector{Float64}) |
| 158 | + end |
| 159 | + end |
| 160 | + end |
109 | 161 | end |
110 | 162 |
|
111 | 163 | if VERSION ≥ v"1.6" |
112 | 164 | @testset "Don't allocate" begin |
113 | | - nlp = BROWNDEN() |
| 165 | + S = Vector{Float64} |
| 166 | + T = eltype(S) |
| 167 | + nlp = BROWNDEN(S) |
114 | 168 | n = nlp.meta.nvar |
115 | 169 | x = nlp.meta.x0 |
116 | | - g = zeros(n) |
117 | | - d = -40 * ones(n) |
| 170 | + g = fill!(S(undef, n), 0) |
| 171 | + d = fill!(S(undef, n), -40) |
118 | 172 | lm = LineModel(nlp, x, d) |
119 | 173 |
|
120 | | - al = @wrappedallocs obj(lm, 1.0) |
| 174 | + al = @wrappedallocs obj(lm, one(T)) |
121 | 175 | @test al == 0 |
122 | 176 |
|
123 | | - al = @wrappedallocs grad!(lm, 1.0, g) |
| 177 | + al = @wrappedallocs grad!(lm, one(T), g) |
124 | 178 | @test al == 0 |
125 | 179 |
|
126 | | - al = @wrappedallocs objgrad!(lm, 1.0, g) |
| 180 | + al = @wrappedallocs objgrad!(lm, one(T), g) |
127 | 181 | @test al == 0 |
128 | 182 |
|
129 | | - al = @wrappedallocs hess!(lm, 1.0, g) |
| 183 | + al = @wrappedallocs hess!(lm, one(T), g) |
130 | 184 | @test al == 0 |
131 | 185 |
|
132 | | - h₀ = obj(lm, 0.0) |
133 | | - slope = grad(lm, 0.0) |
| 186 | + h₀ = obj(lm, zero(T)) |
| 187 | + slope = grad(lm, zero(T)) |
134 | 188 |
|
135 | 189 | # armijo-wolfe |
136 | 190 | (t, gg, ht, nbk, nbW) = armijo_wolfe(lm, h₀, slope, g) |
|
0 commit comments