@@ -11,7 +11,7 @@ Kernel density estimators for Julia.
11
11
The main accessor function is ` kde ` :
12
12
13
13
```
14
- kde(data)
14
+ U = kde(data)
15
15
```
16
16
17
17
will construct a ` UnivariateKDE ` object from the real vector ` data ` . The
@@ -29,6 +29,8 @@ optional keyword arguments are
29
29
* ` bandwidth ` : the bandwidth of the kernel. Default is to use Silverman's
30
30
rule.
31
31
32
+ The ` UnivariateKDE ` object ` U ` contains gridded coordinates (` U.x ` ) and the density
33
+ estimate (` U.density ` ). These are typically sufficient for plotting.
32
34
A related function
33
35
34
36
``` kde_lscv(data) ```
@@ -61,19 +63,22 @@ allows specifying both the distribution and grid.
61
63
The usage mirrors that of the univariate case, except that ` data ` is now
62
64
either a tuple of vectors
63
65
```
64
- kde((xdata, ydata))
66
+ B = kde((xdata, ydata))
65
67
```
66
68
or a matrix with two columns
67
69
```
68
- kde(datamatrix)
70
+ B = kde(datamatrix)
69
71
```
70
72
Similarly, the optional arguments all now take tuple arguments:
71
73
e.g. ` boundary ` now takes a tuple of tuples ` ((xlo,xhi),(ylo,yhi)) ` .
72
74
75
+ The ` BivariateKDE ` object ` B ` contains gridded coordinates (` B.x ` and ` B.y ` ) and the bivariate density
76
+ estimate (` B.density ` ).
77
+
73
78
### Interpolation
74
79
75
80
The KDE objects are stored as gridded density values, with attached
76
- coordinates. These are typically sufficient for plotting (see below ), but
81
+ coordinates. These are typically sufficient for plotting (see above ), but
77
82
intermediate values can be interpolated using the
78
83
[ Interpolations.jl] ( https://github.com/tlycken/Interpolations.jl ) package via the ` pdf ` method
79
84
(extended from Distributions.jl).
0 commit comments