@@ -42,9 +42,9 @@ issingular(bsamp::MixedModelBootstrap) = issingular.(Ref(bsamp.m), bsamp.θ)
42
42
43
43
"""
44
44
parametricbootstrap(rng::AbstractRNG, nsamp::Integer, m::LinearMixedModel;
45
- β = m.β , σ = m.σ, θ = m.θ)
45
+ β = coef(m) , σ = m.σ, θ = m.θ, use_threads=false )
46
46
parametricbootstrap(nsamp::Integer, m::LinearMixedModel;
47
- β = m.β , σ = m.σ, θ = m.θ)
47
+ β = coef(m) , σ = m.σ, θ = m.θ, use_threads=false )
48
48
49
49
Perform `nsamp` parametric bootstrap replication fits of `m`, returning a `MixedModelBootstrap`.
50
50
@@ -53,6 +53,7 @@ The default random number generator is `Random.GLOBAL_RNG`.
53
53
# Named Arguments
54
54
55
55
`β`, `σ`, and `θ` are the values of `m`'s parameters for simulating the responses.
56
+ `use_threads` determines whether or not to use thread-based parallelism.
56
57
"""
57
58
function parametricbootstrap (
58
59
rng:: AbstractRNG ,
@@ -112,7 +113,7 @@ function parametricbootstrap(
112
113
end
113
114
114
115
function parametricbootstrap (nsamp:: Integer , m:: LinearMixedModel ; β = m. β, σ = m. σ, θ = m. θ, use_threads = false )
115
- parametricbootstrap (Random. GLOBAL_RNG, nsamp, m, β = β, σ = σ, θ = θ, use_threads = false )
116
+ parametricbootstrap (Random. GLOBAL_RNG, nsamp, m, β = β, σ = σ, θ = θ, use_threads = use_threads )
116
117
end
117
118
118
119
function Base. propertynames (bsamp:: MixedModelBootstrap )
0 commit comments