|
16 | 16 | ############################################################################# |
17 | 17 |
|
18 | 18 | srand(2713) |
19 | | -push!(LOAD_PATH, "../src") |
20 | 19 |
|
21 | 20 | using StochDynamicProgramming, JuMP |
22 | 21 | using Clp |
@@ -51,23 +50,23 @@ function solve_anticipative_problem(model, scenario) |
51 | 50 | m = Model(solver=SOLVER) |
52 | 51 |
|
53 | 52 |
|
54 | | - @defVar(m, model.xlim[1][1] <= x1[1:(N_STAGES)] <= model.xlim[1][2]) |
55 | | - @defVar(m, model.xlim[2][1] <= x2[1:(N_STAGES)] <= model.xlim[2][2]) |
56 | | - @defVar(m, model.ulim[1][1] <= u1[1:N_STAGES-1] <= model.ulim[1][2]) |
57 | | - @defVar(m, model.ulim[2][1] <= u2[1:N_STAGES-1] <= model.ulim[2][2]) |
| 53 | + @variable(m, model.xlim[1][1] <= x1[1:(N_STAGES)] <= model.xlim[1][2]) |
| 54 | + @variable(m, model.xlim[2][1] <= x2[1:(N_STAGES)] <= model.xlim[2][2]) |
| 55 | + @variable(m, model.ulim[1][1] <= u1[1:N_STAGES-1] <= model.ulim[1][2]) |
| 56 | + @variable(m, model.ulim[2][1] <= u2[1:N_STAGES-1] <= model.ulim[2][2]) |
58 | 57 |
|
59 | | - @setObjective(m, Min, sum{COST[i]*(u1[i] + u2[i]), i = 1:N_STAGES-1}) |
| 58 | + @objective(m, Min, sum{COST[i]*(u1[i] + u2[i]), i = 1:N_STAGES-1}) |
60 | 59 |
|
61 | 60 | for i in 1:N_STAGES-1 |
62 | | - @addConstraint(m, x1[i+1] - x1[i] + u1[i] - scenario[i] == 0) |
63 | | - @addConstraint(m, x2[i+1] - x2[i] + u2[i] - u1[i] == 0) |
| 61 | + @constraint(m, x1[i+1] - x1[i] + u1[i] - scenario[i] == 0) |
| 62 | + @constraint(m, x2[i+1] - x2[i] + u2[i] - u1[i] == 0) |
64 | 63 | end |
65 | 64 |
|
66 | | - @addConstraint(m, x1[1] == model.initialState[1]) |
67 | | - @addConstraint(m, x2[1] == model.initialState[2]) |
| 65 | + @constraint(m, x1[1] == model.initialState[1]) |
| 66 | + @constraint(m, x2[1] == model.initialState[2]) |
68 | 67 |
|
69 | 68 | status = solve(m) |
70 | | - return getObjectiveValue(m) |
| 69 | + return getobjectivevalue(m) |
71 | 70 | end |
72 | 71 |
|
73 | 72 |
|
|
0 commit comments