|
| 1 | + |
| 2 | +import StochDynamicProgramming |
| 3 | + |
| 4 | +require("damsvalley.jl") |
| 5 | + |
| 6 | +# Perform n parallel passes: |
| 7 | +N_PARALLEL_COMPUTATIONS = 3 |
| 8 | +# Synchronize cuts every n iterations: |
| 9 | +SYNCHRONIZE = 5 |
| 10 | + |
| 11 | +# Import model and params in main worker |
| 12 | +# /!\ This line must be before redefinition of seed! |
| 13 | +model, params = init_problem() |
| 14 | + |
| 15 | +# Redefine seeds in every processes to maximize randomness: |
| 16 | +@everywhere srand() |
| 17 | + |
| 18 | +params.maxItNumber = SYNCHRONIZE |
| 19 | +# First pass of algorithm to define value functions in memory: |
| 20 | +V = StochDynamicProgramming.solve_SDDP(model, params)[1] |
| 21 | + |
| 22 | +# Count number of available CPU: |
| 23 | +ncpu = nprocs() - 1 |
| 24 | +println("\nLaunch simulation on ", ncpu, " processes") |
| 25 | +workers = procs()[2:end] |
| 26 | + |
| 27 | +# As we distribute computation in n process, we perform forward pass in parallel: |
| 28 | +params.forwardPassNumber = max(1, round(Int, params.forwardPassNumber/ncpu)) |
| 29 | + |
| 30 | +# Start parallel computation: |
| 31 | +for i in 1:N_PARALLEL_COMPUTATIONS |
| 32 | + # Distribute computation of SDDP in each process: |
| 33 | + refs = [@spawnat w StochDynamicProgramming.solve_SDDP(model, params, V, 1)[1] for w in workers] |
| 34 | + # Catch the result in the main process: |
| 35 | + V = StochDynamicProgramming.catcutsarray([fetch(r) for r in refs]...) |
| 36 | + # We clean the resultant cuts: |
| 37 | + StochDynamicProgramming.remove_redundant_cuts!(V) |
| 38 | + StochDynamicProgramming.prune_cuts!(model, params, V) |
| 39 | + println("Lower bound at pass ", i, ": ", StochDynamicProgramming.get_lower_bound(model, params, V)) |
| 40 | +end |
| 41 | + |
0 commit comments