Skip to content

Commit d16a967

Browse files
committed
Add Hydro Thermal Scheduling example
1 parent 8637cd3 commit d16a967

File tree

3 files changed

+193
-1
lines changed

3 files changed

+193
-1
lines changed

docs/src/tutorial.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,10 @@
11
## Hydro Thermal Scheduling
22

33
In this tutorial, we show how to run the [FAST tutorial example](https://web.stanford.edu/~lcambier/fast/tuto.php) using this package.
4-
The big difference between this example and the example quickstart example is that in this example we will model serial independence.
4+
The big difference between this example and the quickstart example is that in this example we will model serial independence.
55
There will be 5 stages and 2 scenarios per stages except for the first stage which has only one scenario.
66
Each pair of scenario will have the same parent.
7+
An IJulia notebook of this example can be found [in the examples folder](https://github.com/JuliaStochOpt/StructDualDynProg.jl/blob/master/examples/Hydro_Thermal_Scheduling.ipynb).
78

89
We start by setting the constants:
910
```julia

examples/.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
.ipynb_checkpoints
Lines changed: 190 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,190 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"In this tutorial, we show how to run the [FAST tutorial example](https://web.stanford.edu/~lcambier/fast/tuto.php) using this package.\n",
8+
"The big difference between this example and the quickstart example is that in this example we will model serial independence.\n",
9+
"There will be 5 stages and 2 scenarios per stages except for the first stage which has only one scenario.\n",
10+
"Each pair of scenario will have the same parent.\n",
11+
"\n",
12+
"We start by setting the constants:"
13+
]
14+
},
15+
{
16+
"cell_type": "code",
17+
"execution_count": 1,
18+
"metadata": {},
19+
"outputs": [],
20+
"source": [
21+
"const num_stages = 5\n",
22+
"const numScen = 2\n",
23+
"const C = 5\n",
24+
"const V = 8\n",
25+
"const d = 6\n",
26+
"const r = [2, 10];"
27+
]
28+
},
29+
{
30+
"cell_type": "markdown",
31+
"metadata": {},
32+
"source": [
33+
"We now create a matrix to store all the variables of all the models.\n",
34+
"This allows us to use the variables of other models from a given model.\n",
35+
"We also create an array of the first model of each stage to give play the role of parent for the models of the next stage."
36+
]
37+
},
38+
{
39+
"cell_type": "code",
40+
"execution_count": 2,
41+
"metadata": {
42+
"collapsed": true
43+
},
44+
"outputs": [],
45+
"source": [
46+
"using StructJuMP\n",
47+
"x = Matrix{JuMP.Variable}(num_stages, numScen)\n",
48+
"y = Matrix{JuMP.Variable}(num_stages, numScen)\n",
49+
"p = Matrix{JuMP.Variable}(num_stages, numScen)\n",
50+
"models = Vector{JuMP.Model}(num_stages);"
51+
]
52+
},
53+
{
54+
"cell_type": "markdown",
55+
"metadata": {},
56+
"source": [
57+
"Now, we create all the models.\n",
58+
"Note that each model declares that its parent is the first model (i.e. the model `ξ == 1`) of the previous stage.\n",
59+
"Hence if it is not the first model, it also declares that it has the same children than the first model of its stage.\n",
60+
"This is how serial independence is modeled in [StructJuMP](https://github.com/StructJuMP/StructJuMP.jl)."
61+
]
62+
},
63+
{
64+
"cell_type": "code",
65+
"execution_count": 3,
66+
"metadata": {
67+
"collapsed": true
68+
},
69+
"outputs": [],
70+
"source": [
71+
"for s in 1:num_stages\n",
72+
" for ξ in 1:(s == 1 ? 1 : numScen) # for the first stage there is only 1 scenario\n",
73+
" if s == 1\n",
74+
" model = StructuredModel(num_scenarios=numScen)\n",
75+
" else\n",
76+
" model = StructuredModel(parent=models[s-1], prob=1/2, same_children_as=(ξ == 1 ? nothing : models[s]), id=ξ, num_scenarios=(s == num_stages ? 0 : numScen))\n",
77+
" end\n",
78+
" x[s, ξ] = @variable(model, lowerbound=0, upperbound=V)\n",
79+
" y[s, ξ] = @variable(model, lowerbound=0)\n",
80+
" p[s, ξ] = @variable(model, lowerbound=0)\n",
81+
" if s > 1\n",
82+
" @constraint(model, x[s, ξ] <= x[s-1, 1] + r[ξ] - y[s, ξ])\n",
83+
" else\n",
84+
" @constraint(model, x[s, ξ] <= mean(r) - y[s, ξ])\n",
85+
" end\n",
86+
" @constraint(model, p[s, ξ] + y[s, ξ] >= d)\n",
87+
" @objective(model, Min, C * p[s, ξ])\n",
88+
" # models[s] contains the first model only\n",
89+
" if ξ == 1\n",
90+
" models[s] = model\n",
91+
" end\n",
92+
" end\n",
93+
"end"
94+
]
95+
},
96+
{
97+
"cell_type": "markdown",
98+
"metadata": {},
99+
"source": [
100+
"We first need to pick an LP solver, see [here](http://www.juliaopt.org/) for a list of the available choices."
101+
]
102+
},
103+
{
104+
"cell_type": "code",
105+
"execution_count": 4,
106+
"metadata": {},
107+
"outputs": [],
108+
"source": [
109+
"using GLPKMathProgInterface\n",
110+
"solver = GLPKMathProgInterface.GLPKSolverLP();"
111+
]
112+
},
113+
{
114+
"cell_type": "markdown",
115+
"metadata": {},
116+
"source": [
117+
"We now create the lattice, note that the master problem is `models[1]`."
118+
]
119+
},
120+
{
121+
"cell_type": "code",
122+
"execution_count": 5,
123+
"metadata": {},
124+
"outputs": [],
125+
"source": [
126+
"using CutPruners\n",
127+
"const pruner = AvgCutPruningAlgo(-1)\n",
128+
"using StructDualDynProg\n",
129+
"sp = stochasticprogram(models[1], num_stages, solver, pruner);"
130+
]
131+
},
132+
{
133+
"cell_type": "markdown",
134+
"metadata": {},
135+
"source": [
136+
"The SDDP algorithm can now be run on the lattice:"
137+
]
138+
},
139+
{
140+
"cell_type": "code",
141+
"execution_count": 6,
142+
"metadata": {},
143+
"outputs": [
144+
{
145+
"data": {
146+
"text/plain": [
147+
"StructDualDynProg.SDDPSolution(:Optimal, 23.75, [0.0, 6.0, 0.0], Dict{Any,Any}(Pair{Any,Any}(:stats, | Total time | Number | Average time\n",
148+
" Solving problem | 0min 1s 523ms 41μs | 66 | 0min 0s 23ms 76μs\n",
149+
" Merging paths | 0min 0s 143ms 9μs | 6 | 0min 0s 23ms 834μs\n",
150+
"Adding feasibility cuts | 0min 0s 0ms 0μs | 0 | min s ms μs\n",
151+
"Adding optimality cuts | 0min 0s 77ms 615μs | 11 | 0min 0s 7ms 55μs\n",
152+
"Setting parent solution | 0min 0s 35ms 22μs | 64 | 0min 0s 0ms 547μs\n",
153+
" | 0min 1s 635ms 680μs |),Pair{Any,Any}(:nfcuts, 0),Pair{Any,Any}(:nocuts, 11),Pair{Any,Any}(:niter, 2)))"
154+
]
155+
},
156+
"execution_count": 6,
157+
"metadata": {},
158+
"output_type": "execute_result"
159+
}
160+
],
161+
"source": [
162+
"sol = SDDP(sp, num_stages, K = 16, stopcrit = Pereira(2., 0.5) | IterLimit(10))"
163+
]
164+
},
165+
{
166+
"cell_type": "code",
167+
"execution_count": null,
168+
"metadata": {
169+
"collapsed": true
170+
},
171+
"outputs": [],
172+
"source": []
173+
}
174+
],
175+
"metadata": {
176+
"kernelspec": {
177+
"display_name": "Julia 0.6.3",
178+
"language": "julia",
179+
"name": "julia-0.6"
180+
},
181+
"language_info": {
182+
"file_extension": ".jl",
183+
"mimetype": "application/julia",
184+
"name": "julia",
185+
"version": "0.6.3"
186+
}
187+
},
188+
"nbformat": 4,
189+
"nbformat_minor": 2
190+
}

0 commit comments

Comments
 (0)