Skip to content

Commit 1823504

Browse files
committed
finxed typos
1 parent c168049 commit 1823504

File tree

4 files changed

+14
-14
lines changed

4 files changed

+14
-14
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ integrate(f, x, rbm)
6767
```
6868
where:
6969
- `verbsoe` specifies whether to print or not the integration rules applied (default true)
70-
- `use_gamma` sepcifies whether to use rules with the gamma function in the result, or not (default false)
70+
- `use_gamma` specifies whether to use rules with the gamma function in the result, or not (default false)
7171

7272
If no method is specified, first RischMethod will be tried, then RuleBasedMethod:
7373
```julia

src/methods/risch/frontend.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -16,15 +16,15 @@ of `D`, `D` is `d/dx` on `C(x)`, and `D` is iteratively extended from `C(x)(t₁
1616
such that `tᵢ` is monomial over `C(x)(t₁)...(tᵢ₋₁)` with `D(tᵢ)=Hᵢ=Hᵢ(x, t₁,....,tᵢ)`.
1717
The generators `x` of C(x) over C and `tᵢ` of `C(x)(t₁)...(tᵢ)` over `C(x)(t₁)...(tᵢ₋₁)` are returned
1818
as `gs=[x, t₁,...,tₙ]`. (Note that these generators, although here denoted by the same symbols for simplicity, are isomorphic but not identical to
19-
the generators `x, t₁,...,tₙ` of `C(x,t₁,...,tₙ)` given implicitely as the variables of the rational functions `Hᵢ`.)
19+
the generators `x, t₁,...,tₙ` of `C(x,t₁,...,tₙ)` given implicitly as the variables of the rational functions `Hᵢ`.)
2020
2121
# Example
2222
```julia
2323
R, (x, t1, t2) = polynomial_ring(QQ, [:x, :t1, :t2])
2424
Z = zero(R)//1 # zero element of the fraction field of R
2525
K, gs, D = TowerOfDifferentialFields([t1//x, (t2^2+1)*x*t1 + Z])
2626
```
27-
(Note: by adding `Z` to a polynomial we explicitely transform it to an element of the fraction field.)
27+
(Note: by adding `Z` to a polynomial we explicitly transform it to an element of the fraction field.)
2828
"""
2929
function TowerOfDifferentialFields(Hs::Vector{F}) where
3030
{T<:FieldElement, P<:MPolyRingElem{T}, F<:FracElem{P}}
@@ -164,8 +164,8 @@ end
164164

165165
function tan2sincos(f::K, arg::SymbolicUtils.Symbolic, vars::Vector, h::Int=0) where
166166
{T<:FieldElement, P<:PolyRingElem{T}, K<:FracElem{P}}
167-
# This function transforms a Nemo/AbstractAlgebra rational funktion with
168-
# varibale t representing tan(arg) to a SymbolicUtils expression which is
167+
# This function transforms a Nemo/AbstractAlgebra rational function with
168+
# variable t representing tan(arg) to a SymbolicUtils expression which is
169169
# a quotient in which both numerator and denominator are linear combinations
170170
# of expressions of the form cos(2*j*arg) or sin(2*j*arg) where j is an integer >=0.
171171
k = base_ring(base_ring(parent(f)))

src/methods/risch/parametric_problems.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -983,7 +983,7 @@ function LimitedIntegrateReduce(f::F, ws::Vector{F}, D::Derivation) where
983983
# Note: LimitedIntegrateReduce seems to be the only algorithm in Bronstein's book,
984984
# where he messed something up. Already in equation (7.32) of Corollary 7.2.1 (p.247)
985985
# the coefficient of D(p) contains a factor hs too many. This then reproduces in the
986-
# algoritm.
986+
# algorithm.
987987
iscompatible(f, D) && all(iscompatible(w, D) for w in ws) ||
988988
error("rational functions f and w_i must be in the domain of derivation D")
989989
dn, ds = SplitFactor(denominator(f), D)

src/methods/risch/transcendental_functions.jl

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -175,8 +175,8 @@ function ConstantPart(ss::Vector{P}, Ss::Vector{PP}, D::Derivation) where {P<:P
175175
var = string(symbols(parent(Ss[i]))[1])
176176
F = base_ring(ss[i])
177177
if !iszero(u)
178-
# Ignore log terms with contstant arguments. In some cases the denominator of the constant argument
179-
# might be zero after substitutiong (u,v). So this avoids divison by zero in these cases.
178+
# Ignore log terms with constant arguments. In some cases the denominator of the constant argument
179+
# might be zero after substitutiong (u,v). So this avoids division by zero in these cases.
180180
if degree(RT.LT.arg)>0 || (!isconstant(numerator(constant_coefficient(RT.LT.arg))(u,v), BaseDerivation(D)) &&
181181
!isconstant(denominator(constant_coefficient(RT.LT.arg))(u,v), BaseDerivation(D)))
182182
# TODO: Think about avoiding division by zero like below for atan term.
@@ -187,12 +187,12 @@ function ConstantPart(ss::Vector{P}, Ss::Vector{PP}, D::Derivation) where {P<:P
187187
end
188188
end
189189
for AT in RT.ATs
190-
# Ignore atan terms with contstant arguments. In some cases the denominator of the constant argument
191-
# might be zero after substitutiong (u,v). So this avoids divison by zero in these cases.
190+
# Ignore atan terms with constant arguments. In some cases the denominator of the constant argument
191+
# might be zero after substitutiong (u,v). So this avoids division by zero in these cases.
192192
if degree(AT.arg)>0 || (!isconstant(numerator(constant_coefficient(AT.arg))(u,v), BaseDerivation(D)) &&
193193
!isconstant(denominator(constant_coefficient(AT.arg))(u,v), BaseDerivation(D)))
194194
if all([!iszero(denominator(c)(u, v)) for c in coefficients(AT.arg)])
195-
# Ignore atan term if substitution of (u,v) in argument would cause divion by zero.
195+
# Ignore atan term if substitution of (u,v) in argument would cause division by zero.
196196
# This requires more thought, but it seems to work...
197197
g = polynomial(F, [numerator(c)(u, v)//denominator(c)(u, v) for c in coefficients(AT.arg)], var)
198198
push!(gs, FunctionTerm(atan, AT.coeff*v, g))
@@ -503,7 +503,7 @@ function InFieldDerivative(f::F, D::Derivation) where
503503
a0 = p1 - D(q2)
504504
else
505505
H = MonomialDerivative(D)
506-
throw(NotImplementedError("InFieldDerivative: monomial deivative =$H\n@ $(@__FILE__):$(@__LINE__)"))
506+
throw(NotImplementedError("InFieldDerivative: monomial derivative =$H\n@ $(@__FILE__):$(@__LINE__)"))
507507
end
508508
@assert isone(denominator(a0)) && degree(numerator(a0))<=0 # p-D(q) ∈ k
509509
a = constant_coefficient(numerator(a0))
@@ -681,7 +681,7 @@ function InFieldLogarithmicDerivativeOfRadical(f::F, D::Derivation; expect_one::
681681
U = v^div(N, m)*(u+Z)^div(N, n)*(t^2+1+Z)^div(e*N, n)
682682
return N, U, 1
683683
elseif iszero(real(a))
684-
# Note: This case is not treated in 5.12 of Bronsteins's book, altough it seems
684+
# Note: This case is not treated in 5.12 of Bronsteins's book, although it seems
685685
# to be the one relevant for checking the condition of Theorem 5.10.1.
686686
# I did not prove that in the case of Theorem 5.12 real(a)=0 always holds true.
687687
ai = imag(a)
@@ -690,7 +690,7 @@ function InFieldLogarithmicDerivativeOfRadical(f::F, D::Derivation; expect_one::
690690
if !isrational(c1) || !isrational(c2)
691691
return no_solution
692692
end
693-
# implicitely set u = 1 => D(u)//u = 0
693+
# implicitly set u = 1 => D(u)//u = 0
694694
c1 = rationalize_over_Int(c1)
695695
c2 = rationalize_over_Int(c2)
696696
n = lcm(denominator(c1), denominator(c2))

0 commit comments

Comments
 (0)