@@ -175,8 +175,8 @@ function ConstantPart(ss::Vector{P}, Ss::Vector{PP}, D::Derivation) where {P<:P
175175 var = string (symbols (parent (Ss[i]))[1 ])
176176 F = base_ring (ss[i])
177177 if ! iszero (u)
178- # Ignore log terms with contstant arguments. In some cases the denominator of the constant argument
179- # might be zero after substitutiong (u,v). So this avoids divison by zero in these cases.
178+ # Ignore log terms with constant arguments. In some cases the denominator of the constant argument
179+ # might be zero after substitutiong (u,v). So this avoids division by zero in these cases.
180180 if degree (RT. LT. arg)> 0 || (! isconstant (numerator (constant_coefficient (RT. LT. arg))(u,v), BaseDerivation (D)) &&
181181 ! isconstant (denominator (constant_coefficient (RT. LT. arg))(u,v), BaseDerivation (D)))
182182 # TODO : Think about avoiding division by zero like below for atan term.
@@ -187,12 +187,12 @@ function ConstantPart(ss::Vector{P}, Ss::Vector{PP}, D::Derivation) where {P<:P
187187 end
188188 end
189189 for AT in RT. ATs
190- # Ignore atan terms with contstant arguments. In some cases the denominator of the constant argument
191- # might be zero after substitutiong (u,v). So this avoids divison by zero in these cases.
190+ # Ignore atan terms with constant arguments. In some cases the denominator of the constant argument
191+ # might be zero after substitutiong (u,v). So this avoids division by zero in these cases.
192192 if degree (AT. arg)> 0 || (! isconstant (numerator (constant_coefficient (AT. arg))(u,v), BaseDerivation (D)) &&
193193 ! isconstant (denominator (constant_coefficient (AT. arg))(u,v), BaseDerivation (D)))
194194 if all ([! iszero (denominator (c)(u, v)) for c in coefficients (AT. arg)])
195- # Ignore atan term if substitution of (u,v) in argument would cause divion by zero.
195+ # Ignore atan term if substitution of (u,v) in argument would cause division by zero.
196196 # This requires more thought, but it seems to work...
197197 g = polynomial (F, [numerator (c)(u, v)// denominator (c)(u, v) for c in coefficients (AT. arg)], var)
198198 push! (gs, FunctionTerm (atan, AT. coeff* v, g))
@@ -503,7 +503,7 @@ function InFieldDerivative(f::F, D::Derivation) where
503503 a0 = p1 - D (q2)
504504 else
505505 H = MonomialDerivative (D)
506- throw (NotImplementedError (" InFieldDerivative: monomial deivative =$H \n @ $(@__FILE__ ) :$(@__LINE__ ) " ))
506+ throw (NotImplementedError (" InFieldDerivative: monomial derivative =$H \n @ $(@__FILE__ ) :$(@__LINE__ ) " ))
507507 end
508508 @assert isone (denominator (a0)) && degree (numerator (a0))<= 0 # p-D(q) ∈ k
509509 a = constant_coefficient (numerator (a0))
@@ -681,7 +681,7 @@ function InFieldLogarithmicDerivativeOfRadical(f::F, D::Derivation; expect_one::
681681 U = v^ div (N, m)* (u+ Z)^ div (N, n)* (t^ 2 + 1 + Z)^ div (e* N, n)
682682 return N, U, 1
683683 elseif iszero (real (a))
684- # Note: This case is not treated in 5.12 of Bronsteins's book, altough it seems
684+ # Note: This case is not treated in 5.12 of Bronsteins's book, although it seems
685685 # to be the one relevant for checking the condition of Theorem 5.10.1.
686686 # I did not prove that in the case of Theorem 5.12 real(a)=0 always holds true.
687687 ai = imag (a)
@@ -690,7 +690,7 @@ function InFieldLogarithmicDerivativeOfRadical(f::F, D::Derivation; expect_one::
690690 if ! isrational (c1) || ! isrational (c2)
691691 return no_solution
692692 end
693- # implicitely set u = 1 => D(u)//u = 0
693+ # implicitly set u = 1 => D(u)//u = 0
694694 c1 = rationalize_over_Int (c1)
695695 c2 = rationalize_over_Int (c2)
696696 n = lcm (denominator (c1), denominator (c2))
0 commit comments