We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
BasicSymbolic
is_groebner_basis
1 parent 6a7fa15 commit 1bb28aaCopy full SHA for 1bb28aa
ext/SymbolicsGroebnerExt.jl
@@ -3,7 +3,7 @@ module SymbolicsGroebnerExt
3
using Groebner
4
const Nemo = Groebner.Nemo
5
using Symbolics
6
-using Symbolics: Num, symtype
+using Symbolics: Num, symtype, BasicSymbolic
7
import Symbolics.PrecompileTools
8
9
"""
@@ -68,7 +68,7 @@ julia> @variables x y;
68
julia> is_groebner_basis([x^2 - y^2, x*y^2 + x, y^3 + y])
69
```
70
71
-function Symbolics.is_groebner_basis(polynomials::Vector{Num}; kwargs...)
+function Symbolics.is_groebner_basis(polynomials::Vector{<:Union{Num, BasicSymbolic{<:Number}}}; kwargs...)
72
polynoms, _, _ = Symbolics.symbol_to_poly(polynomials)
73
Groebner.isgroebner(polynoms; kwargs...)
74
end
0 commit comments