|
| 1 | +# src/main/quantum/quantum_solver.py |
| 2 | + |
| 3 | +from qiskit import QuantumCircuit, Aer, execute |
| 4 | +from qiskit.visualization import plot_histogram |
| 5 | +import numpy as np |
| 6 | +import logging |
| 7 | + |
| 8 | +class QuantumSolver: |
| 9 | + def __init__(self, backend='qasm_simulator', shots=1024): |
| 10 | + self.backend = backend |
| 11 | + self.shots = shots |
| 12 | + self.aer_simulator = Aer.get_backend(self.backend) |
| 13 | + logging.info("QuantumSolver initialized with backend: %s and shots: %d", self.backend, self.shots) |
| 14 | + |
| 15 | + def solve_optimization(self, problem): |
| 16 | + """ |
| 17 | + Solve an optimization problem using a quantum algorithm. |
| 18 | + |
| 19 | + Args: |
| 20 | + problem (list): A list of values representing the optimization problem. |
| 21 | +
|
| 22 | + Returns: |
| 23 | + dict: A dictionary containing the optimal solution and its value. |
| 24 | + """ |
| 25 | + logging.info("Starting optimization with problem: %s", problem) |
| 26 | + |
| 27 | + # Create a quantum circuit |
| 28 | + num_qubits = len(problem) |
| 29 | + qc = QuantumCircuit(num_qubits) |
| 30 | + |
| 31 | + # Initialize the quantum circuit (example: prepare a superposition) |
| 32 | + qc.h(range(num_qubits)) |
| 33 | + |
| 34 | + # Apply a mock optimization algorithm (e.g., Grover's algorithm) |
| 35 | + # This is a placeholder for a real quantum optimization algorithm |
| 36 | + for i in range(num_qubits): |
| 37 | + qc.x(i) # Example operation: flip the qubit |
| 38 | + |
| 39 | + # Measure the qubits |
| 40 | + qc.measure_all() |
| 41 | + |
| 42 | + # Execute the quantum circuit |
| 43 | + logging.info("Executing quantum circuit...") |
| 44 | + job = execute(qc, backend=self.aer_simulator, shots=self.shots) |
| 45 | + result = job.result() |
| 46 | + counts = result.get_counts(qc) |
| 47 | + |
| 48 | + # Analyze results to find the optimal solution |
| 49 | + optimal_solution = max(counts, key=counts.get) |
| 50 | + optimal_value = self.evaluate_solution(optimal_solution, problem) |
| 51 | + |
| 52 | + logging.info("Optimization complete. Optimal solution: %s, Value: %d", optimal_solution, optimal_value) |
| 53 | + |
| 54 | + return { |
| 55 | + "solution": optimal_solution, |
| 56 | + "value": optimal_value |
| 57 | + } |
| 58 | + |
| 59 | + def evaluate_solution(self, solution, problem): |
| 60 | + """ |
| 61 | + Evaluate the solution to determine its value. |
| 62 | + |
| 63 | + Args: |
| 64 | + solution (str): The binary string representing the solution. |
| 65 | + problem (list): The original problem data. |
| 66 | +
|
| 67 | + Returns: |
| 68 | + int: The evaluated value of the solution. |
| 69 | + """ |
| 70 | + # Convert binary solution to integer |
| 71 | + index = int(solution, 2) |
| 72 | + if index < len(problem): |
| 73 | + return problem[index] |
| 74 | + else: |
| 75 | + return 0 # Default value if index is out of bounds |
| 76 | + |
| 77 | + def visualize_results(self, counts): |
| 78 | + """ |
| 79 | + Visualize the results of the quantum circuit execution. |
| 80 | + |
| 81 | + Args: |
| 82 | + counts (dict): The counts of measurement results. |
| 83 | + """ |
| 84 | + plot_histogram(counts).show() |
0 commit comments