Skip to content

Commit 1d25ec0

Browse files
authored
Create quantum_solver.py
1 parent da134a1 commit 1d25ec0

File tree

1 file changed

+84
-0
lines changed

1 file changed

+84
-0
lines changed
Lines changed: 84 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,84 @@
1+
# src/main/quantum/quantum_solver.py
2+
3+
from qiskit import QuantumCircuit, Aer, execute
4+
from qiskit.visualization import plot_histogram
5+
import numpy as np
6+
import logging
7+
8+
class QuantumSolver:
9+
def __init__(self, backend='qasm_simulator', shots=1024):
10+
self.backend = backend
11+
self.shots = shots
12+
self.aer_simulator = Aer.get_backend(self.backend)
13+
logging.info("QuantumSolver initialized with backend: %s and shots: %d", self.backend, self.shots)
14+
15+
def solve_optimization(self, problem):
16+
"""
17+
Solve an optimization problem using a quantum algorithm.
18+
19+
Args:
20+
problem (list): A list of values representing the optimization problem.
21+
22+
Returns:
23+
dict: A dictionary containing the optimal solution and its value.
24+
"""
25+
logging.info("Starting optimization with problem: %s", problem)
26+
27+
# Create a quantum circuit
28+
num_qubits = len(problem)
29+
qc = QuantumCircuit(num_qubits)
30+
31+
# Initialize the quantum circuit (example: prepare a superposition)
32+
qc.h(range(num_qubits))
33+
34+
# Apply a mock optimization algorithm (e.g., Grover's algorithm)
35+
# This is a placeholder for a real quantum optimization algorithm
36+
for i in range(num_qubits):
37+
qc.x(i) # Example operation: flip the qubit
38+
39+
# Measure the qubits
40+
qc.measure_all()
41+
42+
# Execute the quantum circuit
43+
logging.info("Executing quantum circuit...")
44+
job = execute(qc, backend=self.aer_simulator, shots=self.shots)
45+
result = job.result()
46+
counts = result.get_counts(qc)
47+
48+
# Analyze results to find the optimal solution
49+
optimal_solution = max(counts, key=counts.get)
50+
optimal_value = self.evaluate_solution(optimal_solution, problem)
51+
52+
logging.info("Optimization complete. Optimal solution: %s, Value: %d", optimal_solution, optimal_value)
53+
54+
return {
55+
"solution": optimal_solution,
56+
"value": optimal_value
57+
}
58+
59+
def evaluate_solution(self, solution, problem):
60+
"""
61+
Evaluate the solution to determine its value.
62+
63+
Args:
64+
solution (str): The binary string representing the solution.
65+
problem (list): The original problem data.
66+
67+
Returns:
68+
int: The evaluated value of the solution.
69+
"""
70+
# Convert binary solution to integer
71+
index = int(solution, 2)
72+
if index < len(problem):
73+
return problem[index]
74+
else:
75+
return 0 # Default value if index is out of bounds
76+
77+
def visualize_results(self, counts):
78+
"""
79+
Visualize the results of the quantum circuit execution.
80+
81+
Args:
82+
counts (dict): The counts of measurement results.
83+
"""
84+
plot_histogram(counts).show()

0 commit comments

Comments
 (0)