Skip to content

Commit 601db2d

Browse files
authored
Create risk_assessment.py
1 parent 4a69b75 commit 601db2d

File tree

1 file changed

+94
-0
lines changed

1 file changed

+94
-0
lines changed
Lines changed: 94 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,94 @@
1+
# src/main/arbitration/risk_assessment.py
2+
3+
import numpy as np
4+
import pandas as pd
5+
from sklearn.model_selection import train_test_split
6+
from sklearn.ensemble import RandomForestClassifier
7+
from sklearn.metrics import accuracy_score, classification_report
8+
import joblib
9+
import logging
10+
11+
class RiskAssessment:
12+
def __init__(self, model_path='./models/risk_assessment_model.pkl'):
13+
self.model_path = model_path
14+
self.model = None
15+
logging.info("RiskAssessment initialized with model path: %s", self.model_path)
16+
17+
def load_data(self, data):
18+
"""
19+
Load and preprocess the input data for risk assessment.
20+
21+
Args:
22+
data (dict): A dictionary containing the features for risk assessment.
23+
24+
Returns:
25+
pd.DataFrame: Processed features for the model.
26+
"""
27+
logging.info("Loading data for risk assessment...")
28+
df = pd.DataFrame(data)
29+
logging.info("Data loaded with %d samples.", len(df))
30+
return df
31+
32+
def train(self, data):
33+
"""
34+
Train the risk assessment model using the provided data.
35+
36+
Args:
37+
data (dict): A dictionary containing the features and target variable.
38+
"""
39+
df = self.load_data(data)
40+
41+
# Assuming the last column is the target variable (1 for high risk, 0 for low risk)
42+
X = df.drop(columns=['risk_level']) # Features
43+
y = df['risk_level'] # Target variable
44+
45+
# Split the data into training and testing sets
46+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
47+
48+
# Initialize and train the Random Forest model
49+
self.model = RandomForestClassifier(n_estimators=100, random_state=42)
50+
self.model.fit(X_train, y_train)
51+
52+
# Evaluate the model
53+
y_pred = self.model.predict(X_test)
54+
accuracy = accuracy_score(y_test, y_pred)
55+
logging.info("Model trained successfully with accuracy: %.2f%%", accuracy * 100)
56+
logging.info("Classification report:\n%s", classification_report(y_test, y_pred))
57+
58+
# Save the trained model
59+
self.save_model()
60+
61+
def assess_risk(self, data):
62+
"""
63+
Assess the risk based on the input data.
64+
65+
Args:
66+
data (dict): A dictionary containing the features for risk assessment.
67+
68+
Returns:
69+
dict: The risk assessment result indicating the risk level.
70+
"""
71+
if self.model is None:
72+
logging.error("Model is not trained. Please train the model before assessment.")
73+
return None
74+
75+
# Convert input data to DataFrame
76+
input_df = pd.DataFrame(data, index=[0])
77+
prediction = self.model.predict(input_df)
78+
risk_level = prediction[0] # 1 for high risk, 0 for low risk
79+
80+
logging.info("Risk assessment result: %s", "High risk" if risk_level == 1 else "Low risk")
81+
return {"risk_level": risk_level}
82+
83+
def save_model(self):
84+
"""Save the trained model to a file."""
85+
joblib.dump(self.model, self.model_path)
86+
logging.info("Model saved to %s", self.model_path)
87+
88+
def load_model(self):
89+
"""Load the trained model from a file."""
90+
try:
91+
self.model = joblib.load(self.model_path)
92+
logging.info("Model loaded from %s", self.model_path)
93+
except FileNotFoundError:
94+
logging.error("Model file not found. Please train the model first.")

0 commit comments

Comments
 (0)