|
1 | 1 | # src/main/arbitration/arbitration_service.py |
2 | 2 |
|
| 3 | +import logging |
| 4 | +from quantum.quantum_solver import QuantumSolver |
| 5 | +from ai.predictive_model import PredictiveModel |
| 6 | +from ai.fraud_detection import FraudDetection |
| 7 | +from arbitration.risk_assessment import RiskAssessment |
| 8 | + |
3 | 9 | class ArbitrationService: |
4 | | - def __init__(self, quantum_solver, predictive_model): |
| 10 | + def __init__(self, quantum_solver: QuantumSolver, predictive_model: PredictiveModel, |
| 11 | + fraud_detection: FraudDetection, risk_assessment: RiskAssessment): |
5 | 12 | self.quantum_solver = quantum_solver |
6 | 13 | self.predictive_model = predictive_model |
| 14 | + self.fraud_detection = fraud_detection |
| 15 | + self.risk_assessment = risk_assessment |
| 16 | + logging.info("ArbitrationService initialized.") |
| 17 | + |
| 18 | + def process_arbitration(self, raw_data): |
| 19 | + """ |
| 20 | + Process an arbitration case using quantum and AI components. |
| 21 | + |
| 22 | + Args: |
| 23 | + raw_data (dict): The raw input data for arbitration processing. |
| 24 | +
|
| 25 | + Returns: |
| 26 | + dict: The results of the arbitration processing. |
| 27 | + """ |
| 28 | + logging.info("Starting arbitration processing...") |
| 29 | + |
| 30 | + # Step 1: Preprocess the data |
| 31 | + processed_data = self.preprocess_data(raw_data) |
| 32 | + |
| 33 | + # Step 2: Assess risk |
| 34 | + risk_result = self.risk_assessment.assess_risk(processed_data) |
| 35 | + logging.info("Risk assessment result: %s", risk_result) |
| 36 | + |
| 37 | + # Step 3: Detect fraud |
| 38 | + fraud_result = self.fraud_detection.detect_fraud(processed_data) |
| 39 | + logging.info("Fraud detection result: %s", fraud_result) |
7 | 40 |
|
8 | | - def process_arbitration(self, processed_data): |
9 | | - # Mock arbitration processing |
10 | | - print("Processing arbitration with processed data...") |
11 | | - optimization_result = self.quantum_solver.solve_optimization(processed_data["historical_data"]) |
12 | | - prediction = self.predictive_model.predict_outcome(processed_data["historical_data"]) |
13 | | - return { |
| 41 | + # Step 4: Solve optimization problem using quantum solver |
| 42 | + optimization_result = self.quantum_solver.solve_optimization(processed_data['historical_data']) |
| 43 | + logging.info("Optimization result: %s", optimization_result) |
| 44 | + |
| 45 | + # Step 5: Predict outcome using predictive model |
| 46 | + prediction_result = self.predictive_model.predict_outcome(processed_data) |
| 47 | + logging.info("Prediction result: %s", prediction_result) |
| 48 | + |
| 49 | + # Compile results |
| 50 | + results = { |
| 51 | + "risk_assessment": risk_result, |
| 52 | + "fraud_detection": fraud_result, |
14 | 53 | "optimization": optimization_result, |
15 | | - "prediction": prediction |
| 54 | + "prediction": prediction_result |
16 | 55 | } |
| 56 | + |
| 57 | + logging.info("Arbitration processing completed.") |
| 58 | + return results |
| 59 | + |
| 60 | + def preprocess_data(self, raw_data): |
| 61 | + """ |
| 62 | + Preprocess the raw input data for arbitration processing. |
| 63 | + |
| 64 | + Args: |
| 65 | + raw_data (dict): The raw input data. |
| 66 | +
|
| 67 | + Returns: |
| 68 | + dict: The processed data ready for analysis. |
| 69 | + """ |
| 70 | + # Example preprocessing logic |
| 71 | + logging.info("Preprocessing raw data...") |
| 72 | + # Convert raw data to DataFrame or any other necessary format |
| 73 | + # Here we assume raw_data is already in a suitable format |
| 74 | + return raw_data |
0 commit comments