Skip to content

Commit 9a3f466

Browse files
authored
Update arbitration_service.py
1 parent f1888b6 commit 9a3f466

File tree

1 file changed

+66
-8
lines changed

1 file changed

+66
-8
lines changed
Lines changed: 66 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,74 @@
11
# src/main/arbitration/arbitration_service.py
22

3+
import logging
4+
from quantum.quantum_solver import QuantumSolver
5+
from ai.predictive_model import PredictiveModel
6+
from ai.fraud_detection import FraudDetection
7+
from arbitration.risk_assessment import RiskAssessment
8+
39
class ArbitrationService:
4-
def __init__(self, quantum_solver, predictive_model):
10+
def __init__(self, quantum_solver: QuantumSolver, predictive_model: PredictiveModel,
11+
fraud_detection: FraudDetection, risk_assessment: RiskAssessment):
512
self.quantum_solver = quantum_solver
613
self.predictive_model = predictive_model
14+
self.fraud_detection = fraud_detection
15+
self.risk_assessment = risk_assessment
16+
logging.info("ArbitrationService initialized.")
17+
18+
def process_arbitration(self, raw_data):
19+
"""
20+
Process an arbitration case using quantum and AI components.
21+
22+
Args:
23+
raw_data (dict): The raw input data for arbitration processing.
24+
25+
Returns:
26+
dict: The results of the arbitration processing.
27+
"""
28+
logging.info("Starting arbitration processing...")
29+
30+
# Step 1: Preprocess the data
31+
processed_data = self.preprocess_data(raw_data)
32+
33+
# Step 2: Assess risk
34+
risk_result = self.risk_assessment.assess_risk(processed_data)
35+
logging.info("Risk assessment result: %s", risk_result)
36+
37+
# Step 3: Detect fraud
38+
fraud_result = self.fraud_detection.detect_fraud(processed_data)
39+
logging.info("Fraud detection result: %s", fraud_result)
740

8-
def process_arbitration(self, processed_data):
9-
# Mock arbitration processing
10-
print("Processing arbitration with processed data...")
11-
optimization_result = self.quantum_solver.solve_optimization(processed_data["historical_data"])
12-
prediction = self.predictive_model.predict_outcome(processed_data["historical_data"])
13-
return {
41+
# Step 4: Solve optimization problem using quantum solver
42+
optimization_result = self.quantum_solver.solve_optimization(processed_data['historical_data'])
43+
logging.info("Optimization result: %s", optimization_result)
44+
45+
# Step 5: Predict outcome using predictive model
46+
prediction_result = self.predictive_model.predict_outcome(processed_data)
47+
logging.info("Prediction result: %s", prediction_result)
48+
49+
# Compile results
50+
results = {
51+
"risk_assessment": risk_result,
52+
"fraud_detection": fraud_result,
1453
"optimization": optimization_result,
15-
"prediction": prediction
54+
"prediction": prediction_result
1655
}
56+
57+
logging.info("Arbitration processing completed.")
58+
return results
59+
60+
def preprocess_data(self, raw_data):
61+
"""
62+
Preprocess the raw input data for arbitration processing.
63+
64+
Args:
65+
raw_data (dict): The raw input data.
66+
67+
Returns:
68+
dict: The processed data ready for analysis.
69+
"""
70+
# Example preprocessing logic
71+
logging.info("Preprocessing raw data...")
72+
# Convert raw data to DataFrame or any other necessary format
73+
# Here we assume raw_data is already in a suitable format
74+
return raw_data

0 commit comments

Comments
 (0)