|
| 1 | +# ClassicNetwork 图像分类网络论文链接汇总 |
| 2 | + |
| 3 | +Classical network implemented by pytorch |
| 4 | + |
| 5 | +**LeNet:** |
| 6 | + |
| 7 | +- **LeNet:** LeNet-5, convolutional neural networks |
| 8 | + |
| 9 | + [http://yann.lecun.com/exdb/lenet/index.html](http://yann.lecun.com/exdb/lenet/index.html) |
| 10 | + |
| 11 | +**AlexNet:** |
| 12 | + |
| 13 | +- ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, 2012 |
| 14 | + |
| 15 | + [http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) |
| 16 | + |
| 17 | +**VGG:** |
| 18 | + |
| 19 | +- Very Deep Convolutional Networks for Large-Scale Image Recognition,Karen Simonyan,2014 |
| 20 | + |
| 21 | + [https://arxiv.org/abs/1409.1556](https://arxiv.org/abs/1409.1556) |
| 22 | + |
| 23 | +**ResNet:** |
| 24 | + |
| 25 | +- Deep Residual Learning for Image Recognition, He-Kaiming, 2016 |
| 26 | + |
| 27 | + [https://arxiv.org/abs/1512.03385](https://arxiv.org/abs/1512.03385) |
| 28 | + |
| 29 | +**Batch Normalization** |
| 30 | + |
| 31 | +- Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,2015 |
| 32 | + |
| 33 | + [https://arxiv.org/abs/1502.03167](https://arxiv.org/abs/1502.03167) |
| 34 | + |
| 35 | +**ZFNet** |
| 36 | + |
| 37 | +- Visualizing and Understanding Convolutional Networks,2013 |
| 38 | + |
| 39 | + [https://arxiv.org/abs/1311.2901](https://arxiv.org/abs/1311.2901) |
| 40 | + |
| 41 | +**Inception系列** |
| 42 | + |
| 43 | +- **InceptionV1:** Going deeper with convolutions , Christian Szegedy , 2014 |
| 44 | + |
| 45 | + [https://arxiv.org/abs/1409.4842](https://arxiv.org/abs/1409.4842) |
| 46 | + |
| 47 | +- **InceptionV2 and InceptionV3:** Rethinking the Inception Architecture for Computer Vision , Christian Szegedy ,2015 |
| 48 | + |
| 49 | + [https://arxiv.org/abs/1512.00567](https://arxiv.org/abs/1512.00567) |
| 50 | + |
| 51 | +- **InceptionV4 and Inception-ResNet:** Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , Christian Szegedy ,2016 |
| 52 | + |
| 53 | + [https://arxiv.org/abs/1602.07261](https://arxiv.org/abs/1602.07261) |
| 54 | + |
| 55 | +**DenseNet:** |
| 56 | + |
| 57 | +- Densely Connected Convolutional Networks, 2017 |
| 58 | + |
| 59 | + [https://arxiv.org/abs/1608.06993](https://arxiv.org/abs/1608.06993) |
| 60 | + |
| 61 | +**ResNeXt:** |
| 62 | + |
| 63 | +- Aggregated Residual Transformations for Deep Neural Networks,2017 |
| 64 | + |
| 65 | + [https://arxiv.org/abs/1611.05431](https://arxiv.org/abs/1611.05431) |
| 66 | + |
| 67 | +**NASNet:** |
| 68 | + |
| 69 | +- Learning Transferable Architectures for Scalable Image Recognition |
| 70 | + |
| 71 | + [https://arxiv.org/abs/1707.07012](https://arxiv.org/abs/1707.07012) |
| 72 | + |
| 73 | +**SENet** |
| 74 | + |
| 75 | +- Squeeze-and-Excitation Networks |
| 76 | + |
| 77 | + [https://arxiv.org/abs/1709.01507](https://arxiv.org/abs/1709.01507) |
| 78 | + |
| 79 | +**MobileNet:** |
| 80 | + |
| 81 | +- **MobileNet(v1)** : MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications |
| 82 | + |
| 83 | + [https://arxiv.org/abs/1704.04861](https://arxiv.org/abs/1704.04861) |
| 84 | + |
| 85 | +- **MobileNet(v2)** : MobileNetV2: Inverted Residuals and Linear Bottlenecks |
| 86 | + |
| 87 | + [https://arxiv.org/abs/1801.04381](https://arxiv.org/abs/1801.04381) |
| 88 | + |
| 89 | +- **MobileNet(v3)** : Searching for MobileNetV3 |
| 90 | + |
| 91 | + [https://arxiv.org/abs/1905.02244](https://arxiv.org/abs/1905.02244) |
| 92 | + |
| 93 | + |
| 94 | + |
| 95 | +**ShuffleNet:** |
| 96 | + |
| 97 | +- **ShuffleNet(v1)** :ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices |
| 98 | + |
| 99 | + [https://arxiv.org/abs/1707.01083](https://arxiv.org/abs/1707.01083) |
| 100 | + |
| 101 | +- **ShuffleNet(v2)** :ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design |
| 102 | + |
| 103 | + [https://arxiv.org/abs/1807.11164](https://arxiv.org/abs/1807.11164) |
| 104 | + |
| 105 | +**EfficientNet:** |
| 106 | + |
| 107 | +- EfficientNet(v1) :EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks |
| 108 | + |
| 109 | + [https://arxiv.org/abs/1905.11946](https://arxiv.org/abs/1905.11946) |
| 110 | + |
| 111 | +- EfficientNet(v2) :EfficientNetV2: Smaller Models and Faster Training |
| 112 | + |
| 113 | + [https://arxiv.org/abs/2104.00298](https://arxiv.org/abs/2104.00298) |
0 commit comments