Skip to content

Commit 0755e3e

Browse files
Update README.md
1 parent 4903b8e commit 0755e3e

File tree

1 file changed

+106
-78
lines changed

1 file changed

+106
-78
lines changed

README.md

Lines changed: 106 additions & 78 deletions
Original file line numberDiff line numberDiff line change
@@ -663,7 +663,11 @@ This project is licensed under the GNU Affero General Public License v3.0 - see
663663
- v0.15.0: Agentic Indexers & Retrievers
664664
- v0.16.0: Synthetic Dataset creation
665665
- v0.17.0: Benchmarks & Performance Testing
666-
- v1.0.0: DSL for RAG pipelines + updated testing suite
666+
- v1.0.0: DSL for RAG pipelines + updated testing suite
667+
- v1.1.0: Concurrency Framework for Multi-Agent Workflows
668+
- v1.2.0: Agent Tasking DSL
669+
- v1.3.0: Meta-Agent Framework
670+
- v1.4.0: Rust Core Components
667671

668672
## Coming Features (subject to change)
669673

@@ -681,100 +685,124 @@ This project is licensed under the GNU Affero General Public License v3.0 - see
681685
| | Chain Optimization | Automatic optimization of chain structure | v0.13.0 |
682686
| | Chain Templates | Pre-built templates for common use cases | v0.14.0 |
683687
| | Chain Analytics | Detailed metrics and insights for chain performance | v0.15.0 |
684-
685-
### Combined Engine Examples
686-
687-
#### Example 1: Code Analysis Agent
688+
| **Concurrency Framework** | Multi-Agent Orchestration | Parallel execution of agent workflows | v1.1.0 |
689+
| | Resource Management | Smart allocation of computational resources | v1.1.0 |
690+
| | State Management | Distributed state tracking across agents | v1.1.0 |
691+
| | Error Recovery | Automatic handling of agent failures | v1.1.0 |
692+
| **Agent Tasking DSL** | Query Translation | Convert natural language to structured tasks | v1.2.0 |
693+
| | Task Planning | Automated task decomposition and scheduling | v1.2.0 |
694+
| | Self-Improvement | Dynamic optimization of task execution | v1.2.0 |
695+
| | Task Templates | Reusable task patterns and workflows | v1.2.0 |
696+
| **Meta-Agent Framework** | Agent Composition | Create agents from other agents | v1.3.0 |
697+
| | Agent Specialization | Dynamic role assignment and optimization | v1.3.0 |
698+
| | Agent Evolution | Self-modifying agent architectures | v1.3.0 |
699+
| | Agent Communication | Structured inter-agent messaging | v1.3.0 |
700+
| **Rust Core** | Performance Optimization | High-performance core components | v1.4.0 |
701+
| | Memory Safety | Guaranteed thread and memory safety | v1.4.0 |
702+
| | FFI Integration | Seamless Python-Rust interop | v1.4.0 |
703+
| | SIMD Acceleration | Vectorized operations for embeddings | v1.4.0 |
704+
705+
### New Feature Examples
706+
707+
#### Example 1: Multi-Agent Workflow
688708
```python
689-
from cota_engine.cota_engine import CoTAEngine
690-
from cota_engine.thought_action import LLMThoughtAction
691-
from managers import RAGManager
709+
from cotarag.concurrent import AgentWorkflow
710+
from cotarag.agents import ResearchAgent, AnalysisAgent, SynthesisAgent
711+
712+
# Define workflow with concurrent agents
713+
workflow = AgentWorkflow([
714+
ResearchAgent(num_instances=3), # Parallel research
715+
AnalysisAgent(num_instances=2), # Parallel analysis
716+
SynthesisAgent() # Final synthesis
717+
])
692718

693-
# Initialize both engines
694-
rag = RAGManager(
695-
api_key='your_key',
696-
dir_to_idx='codebase',
697-
grounding='hard',
698-
quality_thresh=8.0
719+
# Execute workflow with automatic resource management
720+
results = workflow.execute(
721+
query="Analyze quantum computing trends",
722+
max_parallel=4,
723+
resource_limit="8GB"
699724
)
725+
```
700726

701-
# Define thought-action for code analysis
702-
class CodeAnalysisAction(LLMThoughtAction):
703-
def thought(self, code):
704-
# Use RAG to find similar code patterns
705-
similar_code = rag.retrieve(code, top_k=3)
706-
return f"Analyze this code considering similar patterns:\n{code}\n\nSimilar patterns:\n{similar_code}"
707-
708-
def action(self, thought_output):
709-
# Generate improvement suggestions
710-
return rag.generate_response(
711-
query=f"Based on this analysis, suggest improvements:\n{thought_output}",
712-
grounding='hard'
713-
)
714-
715-
# Create and run the chain
716-
cota_engine = CoTAEngine([
717-
CodeAnalysisAction(api_key='your_key')
718-
])
719-
720-
# Analyze code
721-
result = cota_engine.run("def process_data(data):\n return data * 2")
727+
#### Example 2: Agent Tasking DSL
728+
```python
729+
from cotarag.dsl import AgentTask, TaskPlanner
730+
731+
# Define task using DSL
732+
task = AgentTask("""
733+
Research quantum computing trends
734+
Then analyze impact on cryptography
735+
Finally synthesize recommendations
736+
""")
737+
738+
# Create and execute task plan
739+
planner = TaskPlanner()
740+
plan = planner.create_plan(task)
741+
results = plan.execute()
722742
```
723743

724-
#### Example 2: Document Understanding Agent
744+
#### Example 3: Meta-Agent Creation
725745
```python
726-
class DocumentUnderstandingAction(LLMThoughtAction):
727-
def thought(self, document):
728-
# Use RAG to find relevant context
729-
context = rag.retrieve(document, top_k=5)
730-
return f"Understand this document in context:\n{document}\n\nRelevant context:\n{context}"
731-
732-
def action(self, thought_output):
733-
# Generate summary and insights
734-
return rag.generate_response(
735-
query=f"Provide a summary and key insights:\n{thought_output}",
736-
grounding='soft'
737-
)
746+
from cotarag.meta import MetaAgent, AgentComposer
738747

739-
# Create and run the chain
740-
cota_engine = CoTAEngine([
741-
DocumentUnderstandingAction(api_key='your_key')
748+
# Compose meta-agent from specialized agents
749+
meta_agent = AgentComposer.create_agent([
750+
ResearchAgent(),
751+
AnalysisAgent(),
752+
SynthesisAgent()
742753
])
743754

744-
# Process document
745-
result = cota_engine.run("Your document text here...")
755+
# Configure meta-agent behavior
756+
meta_agent.configure(
757+
specialization_strategy="dynamic",
758+
evolution_enabled=True,
759+
communication_protocol="structured"
760+
)
761+
762+
# Use meta-agent
763+
results = meta_agent.execute("Complex research task")
746764
```
747765

748-
#### Example 3: Research Assistant Agent
766+
#### Example 4: Rust-Python Integration
749767
```python
750-
class ResearchAssistantAction(LLMThoughtAction):
751-
def thought(self, query):
752-
# Use RAG to find relevant research
753-
research = rag.retrieve(query, top_k=10)
754-
return f"Research this topic:\n{query}\n\nFound research:\n{research}"
755-
756-
def action(self, thought_output):
757-
# Generate research summary and recommendations
758-
return rag.generate_response(
759-
query=f"Summarize findings and provide recommendations:\n{thought_output}",
760-
grounding='hard'
761-
)
768+
from cotarag.core import RustEmbedder, RustIndexer
762769

763-
# Create and run the chain
764-
cota_engine = CoTAEngine([
765-
ResearchAssistantAction(api_key='your_key')
766-
])
770+
# Use Rust-accelerated components
771+
embedder = RustEmbedder(
772+
model="all-MiniLM-L6-v2",
773+
use_simd=True
774+
)
775+
776+
indexer = RustIndexer(
777+
algorithm="hnsw",
778+
parallel=True
779+
)
767780

768-
# Conduct research
769-
result = cota_engine.run("What are the latest developments in quantum computing?")
781+
# Components automatically handle Python-Rust interop
782+
embeddings = embedder.embed_batch(texts)
783+
index = indexer.build_index(embeddings)
770784
```
771785

772-
These examples demonstrate how CoTAEngine and AcceleRAG can be combined to create powerful AI agents that:
773-
- Use RAG for context-aware reasoning
774-
- Maintain clear separation of concerns
775-
- Provide transparent decision-making
776-
- Enable systematic debugging
777-
- Scale to complex tasks
786+
These new features will enable:
787+
1. **Scalable Multi-Agent Systems**
788+
- Parallel execution of complex workflows
789+
- Efficient resource utilization
790+
- Robust error handling
791+
792+
2. **Intelligent Task Management**
793+
- Natural language to structured tasks
794+
- Automated planning and optimization
795+
- Self-improving execution
796+
797+
3. **Advanced Agent Architectures**
798+
- Composition of specialized agents
799+
- Dynamic role optimization
800+
- Self-modifying capabilities
801+
802+
4. **High-Performance Core**
803+
- Memory-safe concurrent operations
804+
- SIMD-accelerated computations
805+
- Seamless Python integration
778806

779807
## Continuous Integration (CI) Note
780808

0 commit comments

Comments
 (0)