@@ -663,7 +663,11 @@ This project is licensed under the GNU Affero General Public License v3.0 - see
663663- v0.15.0: Agentic Indexers & Retrievers
664664- v0.16.0: Synthetic Dataset creation
665665- v0.17.0: Benchmarks & Performance Testing
666- - v1.0.0: DSL for RAG pipelines + updated testing suite
666+ - v1.0.0: DSL for RAG pipelines + updated testing suite
667+ - v1.1.0: Concurrency Framework for Multi-Agent Workflows
668+ - v1.2.0: Agent Tasking DSL
669+ - v1.3.0: Meta-Agent Framework
670+ - v1.4.0: Rust Core Components
667671
668672## Coming Features (subject to change)
669673
@@ -681,100 +685,124 @@ This project is licensed under the GNU Affero General Public License v3.0 - see
681685| | Chain Optimization | Automatic optimization of chain structure | v0.13.0 |
682686| | Chain Templates | Pre-built templates for common use cases | v0.14.0 |
683687| | Chain Analytics | Detailed metrics and insights for chain performance | v0.15.0 |
684-
685- ### Combined Engine Examples
686-
687- #### Example 1: Code Analysis Agent
688+ | ** Concurrency Framework** | Multi-Agent Orchestration | Parallel execution of agent workflows | v1.1.0 |
689+ | | Resource Management | Smart allocation of computational resources | v1.1.0 |
690+ | | State Management | Distributed state tracking across agents | v1.1.0 |
691+ | | Error Recovery | Automatic handling of agent failures | v1.1.0 |
692+ | ** Agent Tasking DSL** | Query Translation | Convert natural language to structured tasks | v1.2.0 |
693+ | | Task Planning | Automated task decomposition and scheduling | v1.2.0 |
694+ | | Self-Improvement | Dynamic optimization of task execution | v1.2.0 |
695+ | | Task Templates | Reusable task patterns and workflows | v1.2.0 |
696+ | ** Meta-Agent Framework** | Agent Composition | Create agents from other agents | v1.3.0 |
697+ | | Agent Specialization | Dynamic role assignment and optimization | v1.3.0 |
698+ | | Agent Evolution | Self-modifying agent architectures | v1.3.0 |
699+ | | Agent Communication | Structured inter-agent messaging | v1.3.0 |
700+ | ** Rust Core** | Performance Optimization | High-performance core components | v1.4.0 |
701+ | | Memory Safety | Guaranteed thread and memory safety | v1.4.0 |
702+ | | FFI Integration | Seamless Python-Rust interop | v1.4.0 |
703+ | | SIMD Acceleration | Vectorized operations for embeddings | v1.4.0 |
704+
705+ ### New Feature Examples
706+
707+ #### Example 1: Multi-Agent Workflow
688708``` python
689- from cota_engine.cota_engine import CoTAEngine
690- from cota_engine.thought_action import LLMThoughtAction
691- from managers import RAGManager
709+ from cotarag.concurrent import AgentWorkflow
710+ from cotarag.agents import ResearchAgent, AnalysisAgent, SynthesisAgent
711+
712+ # Define workflow with concurrent agents
713+ workflow = AgentWorkflow([
714+ ResearchAgent(num_instances = 3 ), # Parallel research
715+ AnalysisAgent(num_instances = 2 ), # Parallel analysis
716+ SynthesisAgent() # Final synthesis
717+ ])
692718
693- # Initialize both engines
694- rag = RAGManager(
695- api_key = ' your_key' ,
696- dir_to_idx = ' codebase' ,
697- grounding = ' hard' ,
698- quality_thresh = 8.0
719+ # Execute workflow with automatic resource management
720+ results = workflow.execute(
721+ query = " Analyze quantum computing trends" ,
722+ max_parallel = 4 ,
723+ resource_limit = " 8GB"
699724)
725+ ```
700726
701- # Define thought-action for code analysis
702- class CodeAnalysisAction (LLMThoughtAction ):
703- def thought (self , code ):
704- # Use RAG to find similar code patterns
705- similar_code = rag.retrieve(code, top_k = 3 )
706- return f " Analyze this code considering similar patterns: \n { code} \n\n Similar patterns: \n { similar_code} "
707-
708- def action (self , thought_output ):
709- # Generate improvement suggestions
710- return rag.generate_response(
711- query = f " Based on this analysis, suggest improvements: \n { thought_output} " ,
712- grounding = ' hard'
713- )
714-
715- # Create and run the chain
716- cota_engine = CoTAEngine([
717- CodeAnalysisAction(api_key = ' your_key' )
718- ])
719-
720- # Analyze code
721- result = cota_engine.run(" def process_data(data):\n return data * 2" )
727+ #### Example 2: Agent Tasking DSL
728+ ``` python
729+ from cotarag.dsl import AgentTask, TaskPlanner
730+
731+ # Define task using DSL
732+ task = AgentTask("""
733+ Research quantum computing trends
734+ Then analyze impact on cryptography
735+ Finally synthesize recommendations
736+ """ )
737+
738+ # Create and execute task plan
739+ planner = TaskPlanner()
740+ plan = planner.create_plan(task)
741+ results = plan.execute()
722742```
723743
724- #### Example 2: Document Understanding Agent
744+ #### Example 3: Meta- Agent Creation
725745``` python
726- class DocumentUnderstandingAction (LLMThoughtAction ):
727- def thought (self , document ):
728- # Use RAG to find relevant context
729- context = rag.retrieve(document, top_k = 5 )
730- return f " Understand this document in context: \n { document} \n\n Relevant context: \n { context} "
731-
732- def action (self , thought_output ):
733- # Generate summary and insights
734- return rag.generate_response(
735- query = f " Provide a summary and key insights: \n { thought_output} " ,
736- grounding = ' soft'
737- )
746+ from cotarag.meta import MetaAgent, AgentComposer
738747
739- # Create and run the chain
740- cota_engine = CoTAEngine([
741- DocumentUnderstandingAction(api_key = ' your_key' )
748+ # Compose meta-agent from specialized agents
749+ meta_agent = AgentComposer.create_agent([
750+ ResearchAgent(),
751+ AnalysisAgent(),
752+ SynthesisAgent()
742753])
743754
744- # Process document
745- result = cota_engine.run(" Your document text here..." )
755+ # Configure meta-agent behavior
756+ meta_agent.configure(
757+ specialization_strategy = " dynamic" ,
758+ evolution_enabled = True ,
759+ communication_protocol = " structured"
760+ )
761+
762+ # Use meta-agent
763+ results = meta_agent.execute(" Complex research task" )
746764```
747765
748- #### Example 3: Research Assistant Agent
766+ #### Example 4: Rust-Python Integration
749767``` python
750- class ResearchAssistantAction (LLMThoughtAction ):
751- def thought (self , query ):
752- # Use RAG to find relevant research
753- research = rag.retrieve(query, top_k = 10 )
754- return f " Research this topic: \n { query} \n\n Found research: \n { research} "
755-
756- def action (self , thought_output ):
757- # Generate research summary and recommendations
758- return rag.generate_response(
759- query = f " Summarize findings and provide recommendations: \n { thought_output} " ,
760- grounding = ' hard'
761- )
768+ from cotarag.core import RustEmbedder, RustIndexer
762769
763- # Create and run the chain
764- cota_engine = CoTAEngine([
765- ResearchAssistantAction(api_key = ' your_key' )
766- ])
770+ # Use Rust-accelerated components
771+ embedder = RustEmbedder(
772+ model = " all-MiniLM-L6-v2" ,
773+ use_simd = True
774+ )
775+
776+ indexer = RustIndexer(
777+ algorithm = " hnsw" ,
778+ parallel = True
779+ )
767780
768- # Conduct research
769- result = cota_engine.run(" What are the latest developments in quantum computing?" )
781+ # Components automatically handle Python-Rust interop
782+ embeddings = embedder.embed_batch(texts)
783+ index = indexer.build_index(embeddings)
770784```
771785
772- These examples demonstrate how CoTAEngine and AcceleRAG can be combined to create powerful AI agents that:
773- - Use RAG for context-aware reasoning
774- - Maintain clear separation of concerns
775- - Provide transparent decision-making
776- - Enable systematic debugging
777- - Scale to complex tasks
786+ These new features will enable:
787+ 1 . ** Scalable Multi-Agent Systems**
788+ - Parallel execution of complex workflows
789+ - Efficient resource utilization
790+ - Robust error handling
791+
792+ 2 . ** Intelligent Task Management**
793+ - Natural language to structured tasks
794+ - Automated planning and optimization
795+ - Self-improving execution
796+
797+ 3 . ** Advanced Agent Architectures**
798+ - Composition of specialized agents
799+ - Dynamic role optimization
800+ - Self-modifying capabilities
801+
802+ 4 . ** High-Performance Core**
803+ - Memory-safe concurrent operations
804+ - SIMD-accelerated computations
805+ - Seamless Python integration
778806
779807## Continuous Integration (CI) Note
780808
0 commit comments