@@ -116,7 +116,7 @@ def estimated_power(X, clock_threshold, voltage_scale, clock_scale, power_max):
116116 return powers
117117
118118
119- def fit_performance_frequency_model (freqs , nvml_power ):
119+ def fit_power_frequency_model (freqs , nvml_power ):
120120 """ Fit the performance frequency model based on frequency and power measurements """
121121
122122 nvml_gr_clocks = np .array (freqs )
@@ -149,10 +149,10 @@ def fit_performance_frequency_model(freqs, nvml_power):
149149 return clock_threshold + clock_min , fit_parameters , scale_parameters
150150
151151
152- def create_performance_frequency_model (device = 0 , n_samples = 10 , verbose = False , nvidia_smi_fallback = None , use_locked_clocks = False ):
152+ def create_power_frequency_model (device = 0 , n_samples = 10 , verbose = False , nvidia_smi_fallback = None , use_locked_clocks = False ):
153153 """ Calculate the most energy-efficient clock frequency of device
154154
155- This function uses a performance model to fit the performance -frequency curve
155+ This function uses a performance model to fit the power -frequency curve
156156 using a synthethic benchmarking kernel. The method has been described in:
157157
158158 * Going green: optimizing GPUs for energy efficiency through model-steered auto-tuning
@@ -186,7 +186,7 @@ def create_performance_frequency_model(device=0, n_samples=10, verbose=False, nv
186186 print ("Clock frequencies:" , freqs .tolist ())
187187 print ("Power consumption:" , nvml_power .tolist ())
188188
189- ridge_frequency , fitted_params , scaling = fit_performance_frequency_model (freqs , nvml_power )
189+ ridge_frequency , fitted_params , scaling = fit_power_frequency_model (freqs , nvml_power )
190190
191191 if verbose :
192192 print (f"Modelled most energy efficient frequency: { ridge_frequency } MHz" )
0 commit comments