@@ -54,7 +54,7 @@ def tune(searchspace: Searchspace, runner, tuning_options):
5454 print (e )
5555 return cost_func .results
5656
57- ap = acceptance_prob (old_cost , new_cost , T , tuning_options )
57+ ap = acceptance_prob (old_cost , new_cost , T )
5858 r = random .random ()
5959
6060 if ap > r :
@@ -85,9 +85,9 @@ def tune(searchspace: Searchspace, runner, tuning_options):
8585
8686tune .__doc__ = common .get_strategy_docstring ("Simulated Annealing" , _options )
8787
88- def acceptance_prob (old_cost , new_cost , T , tuning_options ):
88+ def acceptance_prob (old_cost , new_cost , T ):
8989 """Annealing equation, with modifications to work towards a lower value."""
90- error_val = sys .float_info .max if not tuning_options . objective_higher_is_better else - sys . float_info . max
90+ error_val = sys .float_info .max
9191 # if start pos is not valid, always move
9292 if old_cost == error_val :
9393 return 1.0
@@ -98,8 +98,6 @@ def acceptance_prob(old_cost, new_cost, T, tuning_options):
9898 if new_cost < old_cost :
9999 return 1.0
100100 # maybe move if old cost is better than new cost depending on T and random value
101- if tuning_options .objective_higher_is_better :
102- return np .exp (((new_cost - old_cost )/ new_cost )/ T )
103101 return np .exp (((old_cost - new_cost )/ old_cost )/ T )
104102
105103
0 commit comments