@@ -95,7 +95,7 @@ def gan_log_files():
9595 "total" ,
9696 "g_src_domain_loss" ,
9797 "g_target_domain_loss" ,
98- "c_loss " ,
98+ "src_c_loss " ,
9999 },
100100 "engine_output_d_loss" : {
101101 "total" ,
@@ -153,7 +153,7 @@ def test_aligner(self):
153153 "optimizers_C_Adam" : {"lr" },
154154 "engine_output_total_loss" : {
155155 "total" ,
156- "c_loss " ,
156+ "src_c_loss " ,
157157 "features_confusion_loss" ,
158158 "logits_confusion_loss" ,
159159 },
@@ -172,7 +172,9 @@ def test_aligner(self):
172172 def test_cdan (self ):
173173 models = get_gcd ()
174174 misc = Misc ({"feature_combiner" : RandomizedDotProduct ([512 , 10 ], 512 )})
175- g_weighter = MeanWeighter (weights = {"g_target_domain_loss" : 0.5 , "c_loss" : 0.1 })
175+ g_weighter = MeanWeighter (
176+ weights = {"g_target_domain_loss" : 0.5 , "src_c_loss" : 0.1 }
177+ )
176178 adapter = CDAN (models = models , misc = misc , hook_kwargs = {"g_weighter" : g_weighter })
177179 self .assertTrue (isinstance (adapter .hook , CDANHook ))
178180 log_files = gan_log_files ()
@@ -186,7 +188,7 @@ def test_cdan(self):
186188 },
187189 "hook_8c2a74151317b9315573314fafc0d8ad6e12f72a84433739f6f0762a4ca11ab0_weights" : {
188190 "g_target_domain_loss" ,
189- "c_loss " ,
191+ "src_c_loss " ,
190192 },
191193 }
192194 )
@@ -204,7 +206,7 @@ def test_classifier(self):
204206 "optimizers_C_Adam" : {"lr" },
205207 "engine_output_total_loss" : {
206208 "total" ,
207- "c_loss " ,
209+ "src_c_loss " ,
208210 },
209211 "hook_ClassifierHook_hook_ChainHook_hooks0_OptimizerHook_weighter_MeanWeighter" : {
210212 "scale"
@@ -224,7 +226,7 @@ def test_dann(self):
224226 "optimizers_D_Adam" : {"lr" },
225227 "engine_output_total_loss" : {
226228 "total" ,
227- "c_loss " ,
229+ "src_c_loss " ,
228230 "src_domain_loss" ,
229231 "target_domain_loss" ,
230232 },
@@ -267,7 +269,7 @@ def test_finetuner(self):
267269 "optimizers_C_Adam" : {"lr" },
268270 "engine_output_total_loss" : {
269271 "total" ,
270- "c_loss " ,
272+ "src_c_loss " ,
271273 },
272274 "hook_FinetunerHook_hook_ChainHook_hooks0_OptimizerHook_weighter_MeanWeighter" : {
273275 "scale"
@@ -305,7 +307,7 @@ def test_joint_aligner(self):
305307 "optimizers_C_Adam" : {"lr" },
306308 "engine_output_total_loss" : {
307309 "total" ,
308- "c_loss " ,
310+ "src_c_loss " ,
309311 "joint_confusion_loss" ,
310312 },
311313 "hook_AlignerPlusCHook_hook_ChainHook_hooks0_OptimizerHook_weighter_MeanWeighter" : {
@@ -328,7 +330,7 @@ def test_gvb(self):
328330 "optimizers_D_Adam" : {"lr" },
329331 "engine_output_total_loss" : {
330332 "total" ,
331- "c_loss " ,
333+ "src_c_loss " ,
332334 "src_domain_loss" ,
333335 "target_domain_loss" ,
334336 "g_src_bridge_loss" ,
@@ -361,13 +363,13 @@ def test_mcd(self):
361363 "optimizers_C_Adam" : {"lr" },
362364 "engine_output_x_loss" : {
363365 "total" ,
364- "c_loss0 " ,
365- "c_loss1 " ,
366+ "src_c_loss0 " ,
367+ "src_c_loss1 " ,
366368 },
367369 "engine_output_y_loss" : {
368370 "total" ,
369- "c_loss0 " ,
370- "c_loss1 " ,
371+ "src_c_loss0 " ,
372+ "src_c_loss1 " ,
371373 "discrepancy_loss" ,
372374 },
373375 "engine_output_z_loss" : {"total" , "discrepancy_loss" },
@@ -399,7 +401,7 @@ def test_rtn(self):
399401 "optimizers_residual_model_Adam" : {"lr" },
400402 "engine_output_total_loss" : {
401403 "total" ,
402- "c_loss " ,
404+ "src_c_loss " ,
403405 "entropy_loss" ,
404406 "features_confusion_loss" ,
405407 },
@@ -424,8 +426,8 @@ def test_symnets(self):
424426 "optimizers_G_Adam" : {"lr" },
425427 "optimizers_C_Adam" : {"lr" },
426428 "engine_output_c_loss" : {
427- "c_loss0 " ,
428- "c_loss1 " ,
429+ "src_c_loss0 " ,
430+ "src_c_loss1 " ,
429431 "c_symnets_src_domain_loss_0" ,
430432 "c_symnets_target_domain_loss_1" ,
431433 "total" ,
0 commit comments