Skip to content

Commit 3cd55db

Browse files
authored
Update ChebyshevIteration.java
1 parent 3968a1e commit 3cd55db

File tree

1 file changed

+3
-46
lines changed

1 file changed

+3
-46
lines changed

src/main/java/com/thealgorithms/maths/ChebyshevIteration.java

Lines changed: 3 additions & 46 deletions
Original file line numberDiff line numberDiff line change
@@ -18,9 +18,9 @@
1818
*
1919
* @author Mitrajit Ghorui(KeyKyrios)
2020
*/
21-
public final class Chebyshev {
21+
public final class ChebyshevIteration {
2222

23-
private Chebyshev() {
23+
private ChebyshevIteration() {
2424
}
2525

2626
/**
@@ -84,7 +84,7 @@ public static double[] solve(
8484
double[] xUpdate = scalarMultiply(alpha, p);
8585
x = vectorAdd(x, xUpdate); // x = x + alpha * p
8686

87-
// Recompute residual for accuracy, though it can be updated iteratively
87+
// Recompute residual for accuracy
8888
r = vectorSubtract(b, matrixVectorMultiply(a, x));
8989
alphaPrev = alpha;
9090
}
@@ -132,9 +132,6 @@ private static void validateInputs(
132132
}
133133

134134
// --- Vector/Matrix Helper Methods ---
135-
/**
136-
* Computes the product of a matrix A and a vector v (Av).
137-
*/
138135
private static double[] matrixVectorMultiply(double[][] a, double[] v) {
139136
int n = a.length;
140137
double[] result = new double[n];
@@ -148,50 +145,10 @@ private static double[] matrixVectorMultiply(double[][] a, double[] v) {
148145
return result;
149146
}
150147

151-
/**
152-
* Computes the subtraction of two vectors (v1 - v2).
153-
*/
154148
private static double[] vectorSubtract(double[] v1, double[] v2) {
155149
int n = v1.length;
156150
double[] result = new double[n];
157151
for (int i = 0; i < n; i++) {
158152
result[i] = v1[i] - v2[i];
159153
}
160154
return result;
161-
}
162-
163-
/**
164-
* Computes the addition of two vectors (v1 + v2).
165-
*/
166-
private static double[] vectorAdd(double[] v1, double[] v2) {
167-
int n = v1.length;
168-
double[] result = new double[n];
169-
for (int i = 0; i < n; i++) {
170-
result[i] = v1[i] + v2[i];
171-
}
172-
return result;
173-
}
174-
175-
/**
176-
* Computes the product of a scalar and a vector (s * v).
177-
*/
178-
private static double[] scalarMultiply(double scalar, double[] v) {
179-
int n = v.length;
180-
double[] result = new double[n];
181-
for (int i = 0; i < n; i++) {
182-
result[i] = scalar * v[i];
183-
}
184-
return result;
185-
}
186-
187-
/**
188-
* Computes the L2 norm (Euclidean norm) of a vector.
189-
*/
190-
private static double vectorNorm(double[] v) {
191-
double sumOfSquares = 0;
192-
for (double val : v) {
193-
sumOfSquares += val * val;
194-
}
195-
return Math.sqrt(sumOfSquares);
196-
}
197-
}

0 commit comments

Comments
 (0)