diff --git a/test_conformance/math_brute_force/common.h b/test_conformance/math_brute_force/common.h index d7e70a71b4..3eb8e6a918 100644 --- a/test_conformance/math_brute_force/common.h +++ b/test_conformance/math_brute_force/common.h @@ -131,6 +131,7 @@ struct TestInfoBase // Result limit for half_sin/half_cos/half_tan. float half_sin_cos_tan_limit = -1.f; + float tgamma_arg_limit = 0.f; // Whether the test is being run in relaxed mode. bool relaxedMode = false; diff --git a/test_conformance/math_brute_force/function_list.cpp b/test_conformance/math_brute_force/function_list.cpp index 408a394afa..e10165a6e5 100644 --- a/test_conformance/math_brute_force/function_list.cpp +++ b/test_conformance/math_brute_force/function_list.cpp @@ -405,7 +405,7 @@ const Func functionList[] = { ENTRY(tanh, 5.0f, 5.0f, 2.0f, 3.0f, FTZ_OFF, unaryF), ENTRY(tanpi, 6.0f, 6.0f, 2.0f, 3.0f, FTZ_OFF, unaryF), - //ENTRY(tgamma, 16.0f, 16.0f, FTZ_OFF, unaryF), Commented this out until we can be sure this requirement is realistic + ENTRY(tgamma, 16.0f, 16.0f, 4.f, 4.f, FTZ_OFF, unaryF), ENTRY(trunc, 0.0f, 0.0f, 0.0f, 0.0f, FTZ_OFF, unaryF), HALF_ENTRY(cos, 8192.0f, 8192.0f, FTZ_ON, unaryOF), diff --git a/test_conformance/math_brute_force/main.cpp b/test_conformance/math_brute_force/main.cpp index 519d8b1293..22ee80134e 100644 --- a/test_conformance/math_brute_force/main.cpp +++ b/test_conformance/math_brute_force/main.cpp @@ -343,6 +343,7 @@ DO_TEST(sqrt_cr) DO_TEST(tan) DO_TEST(tanh) DO_TEST(tanpi) +DO_TEST(tgamma) DO_TEST(trunc) DO_TEST(half_cos) DO_TEST(half_divide) diff --git a/test_conformance/math_brute_force/reference_math.cpp b/test_conformance/math_brute_force/reference_math.cpp index a66e6f7e55..7b257b5aee 100644 --- a/test_conformance/math_brute_force/reference_math.cpp +++ b/test_conformance/math_brute_force/reference_math.cpp @@ -23,6 +23,8 @@ #include #endif +#include + #include "utility.h" #if defined(__SSE__) || _M_IX86_FP == 1 @@ -2117,6 +2119,793 @@ int reference_not(double x) return r; } +namespace { + +typedef std::uint8_t u_int8_t; +typedef std::uint16_t u_int16_t; +typedef std::uint32_t u_int32_t; +typedef std::uint64_t u_int64_t; + +/* $OpenBSD: polevll.c,v 1.2 2013/11/12 20:35:09 martynas Exp $ */ +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +// clang-format off +/* Definitions provided directly by GCC and Clang. */ +#if !(defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && defined(__ORDER_BIG_ENDIAN__)) + +#if defined(__GLIBC__) + +#include +#include +#define __ORDER_LITTLE_ENDIAN__ __LITTLE_ENDIAN +#define __ORDER_BIG_ENDIAN__ __BIG_ENDIAN +#define __BYTE_ORDER__ __BYTE_ORDER + +#elif defined(__APPLE__) + +#include +#define __ORDER_LITTLE_ENDIAN__ LITTLE_ENDIAN +#define __ORDER_BIG_ENDIAN__ BIG_ENDIAN +#define __BYTE_ORDER__ BYTE_ORDER + +#elif defined(_WIN32) + +#define __ORDER_LITTLE_ENDIAN__ 1234 +#define __ORDER_BIG_ENDIAN__ 4321 +#define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__ + +#endif + +#endif /* __BYTE_ORDER__, __ORDER_LITTLE_ENDIAN__ and __ORDER_BIG_ENDIAN__ */ + +#ifndef __FLOAT_WORD_ORDER__ +#define __FLOAT_WORD_ORDER__ __BYTE_ORDER__ +#endif + +#if __FLOAT_WORD_ORDER__ == __ORDER_BIG_ENDIAN__ + +typedef union +{ + double value; + struct + { + u_int32_t msw; + u_int32_t lsw; + } parts; + struct + { + u_int64_t w; + } xparts; +} ieee_double_shape_type; + +#endif + +#if __FLOAT_WORD_ORDER__ == __ORDER_LITTLE_ENDIAN__ + +typedef union +{ + double value; + struct + { + u_int32_t lsw; + u_int32_t msw; + } parts; + struct + { + u_int64_t w; + } xparts; +} ieee_double_shape_type; + +#endif + +/* Set the less significant 32 bits of a double from an int. */ + +#define SET_LOW_WORD(d,v) \ +do { \ + ieee_double_shape_type sl_u; \ + sl_u.value = (d); \ + sl_u.parts.lsw = (v); \ + (d) = sl_u.value; \ +} while (0) + +/* Get the less significant 32 bit int from a double. */ + +#define GET_LOW_WORD(i,d) \ +do { \ + ieee_double_shape_type gl_u; \ + gl_u.value = (d); \ + (i) = gl_u.parts.lsw; \ +} while (0) + +/* + * TRUNC() is a macro that sets the trailing 27 bits in the mantissa of an + * IEEE double variable to zero. It must be expression-like for syntactic + * reasons, and we implement this expression using an inline function + * instead of a pure macro to avoid depending on the gcc feature of + * statement-expressions. + */ +#define TRUNC(d) (_b_trunc(&(d))) + +static __inline void +_b_trunc(volatile double *_dp) +{ + //VBS + //u_int32_t _lw; + u_int32_t _lw; + + GET_LOW_WORD(_lw, *_dp); + SET_LOW_WORD(*_dp, _lw & 0xf8000000); +} + +struct Double { + double a; + double b; +}; + +constexpr int tgN = 128; + +/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128. + * Used for generation of extend precision logarithms. + * The constant 35184372088832 is 2^45, so the divide is exact. + * It ensures correct reading of logF_head, even for inaccurate + * decimal-to-binary conversion routines. (Everybody gets the + * right answer for integers less than 2^53.) + * Values for log(F) were generated using error < 10^-57 absolute + * with the bc -l package. +*/ +static double A1 = .08333333333333178827; +static double A2 = .01250000000377174923; +static double A3 = .002232139987919447809; +static double A4 = .0004348877777076145742; + +static double logF_head[tgN+1] = { + 0., + .007782140442060381246, + .015504186535963526694, + .023167059281547608406, + .030771658666765233647, + .038318864302141264488, + .045809536031242714670, + .053244514518837604555, + .060624621816486978786, + .067950661908525944454, + .075223421237524235039, + .082443669210988446138, + .089612158689760690322, + .096729626458454731618, + .103796793681567578460, + .110814366340264314203, + .117783035656430001836, + .124703478501032805070, + .131576357788617315236, + .138402322859292326029, + .145182009844575077295, + .151916042025732167530, + .158605030176659056451, + .165249572895390883786, + .171850256926518341060, + .178407657472689606947, + .184922338493834104156, + .191394852999565046047, + .197825743329758552135, + .204215541428766300668, + .210564769107350002741, + .216873938300523150246, + .223143551314024080056, + .229374101064877322642, + .235566071312860003672, + .241719936886966024758, + .247836163904594286577, + .253915209980732470285, + .259957524436686071567, + .265963548496984003577, + .271933715484010463114, + .277868451003087102435, + .283768173130738432519, + .289633292582948342896, + .295464212893421063199, + .301261330578199704177, + .307025035294827830512, + .312755710004239517729, + .318453731118097493890, + .324119468654316733591, + .329753286372579168528, + .335355541920762334484, + .340926586970454081892, + .346466767346100823488, + .351976423156884266063, + .357455888922231679316, + .362905493689140712376, + .368325561158599157352, + .373716409793814818840, + .379078352934811846353, + .384411698910298582632, + .389716751140440464951, + .394993808240542421117, + .400243164127459749579, + .405465108107819105498, + .410659924985338875558, + .415827895143593195825, + .420969294644237379543, + .426084395310681429691, + .431173464818130014464, + .436236766774527495726, + .441274560805140936281, + .446287102628048160113, + .451274644139630254358, + .456237433481874177232, + .461175715122408291790, + .466089729924533457960, + .470979715219073113985, + .475845904869856894947, + .480688529345570714212, + .485507815781602403149, + .490303988045525329653, + .495077266798034543171, + .499827869556611403822, + .504556010751912253908, + .509261901790523552335, + .513945751101346104405, + .518607764208354637958, + .523248143765158602036, + .527867089620485785417, + .532464798869114019908, + .537041465897345915436, + .541597282432121573947, + .546132437597407260909, + .550647117952394182793, + .555141507540611200965, + .559615787935399566777, + .564070138285387656651, + .568504735352689749561, + .572919753562018740922, + .577315365035246941260, + .581691739635061821900, + .586049045003164792433, + .590387446602107957005, + .594707107746216934174, + .599008189645246602594, + .603290851438941899687, + .607555250224322662688, + .611801541106615331955, + .616029877215623855590, + .620240409751204424537, + .624433288012369303032, + .628608659422752680256, + .632766669570628437213, + .636907462236194987781, + .641031179420679109171, + .645137961373620782978, + .649227946625615004450, + .653301272011958644725, + .657358072709030238911, + .661398482245203922502, + .665422632544505177065, + .669430653942981734871, + .673422675212350441142, + .677398823590920073911, + .681359224807238206267, + .685304003098281100392, + .689233281238557538017, + .693147180560117703862 +}; + +static double logF_tail[tgN+1] = { + 0., + -.00000000000000543229938420049, + .00000000000000172745674997061, + -.00000000000001323017818229233, + -.00000000000001154527628289872, + -.00000000000000466529469958300, + .00000000000005148849572685810, + -.00000000000002532168943117445, + -.00000000000005213620639136504, + -.00000000000001819506003016881, + .00000000000006329065958724544, + .00000000000008614512936087814, + -.00000000000007355770219435028, + .00000000000009638067658552277, + .00000000000007598636597194141, + .00000000000002579999128306990, + -.00000000000004654729747598444, + -.00000000000007556920687451336, + .00000000000010195735223708472, + -.00000000000017319034406422306, + -.00000000000007718001336828098, + .00000000000010980754099855238, + -.00000000000002047235780046195, + -.00000000000008372091099235912, + .00000000000014088127937111135, + .00000000000012869017157588257, + .00000000000017788850778198106, + .00000000000006440856150696891, + .00000000000016132822667240822, + -.00000000000007540916511956188, + -.00000000000000036507188831790, + .00000000000009120937249914984, + .00000000000018567570959796010, + -.00000000000003149265065191483, + -.00000000000009309459495196889, + .00000000000017914338601329117, + -.00000000000001302979717330866, + .00000000000023097385217586939, + .00000000000023999540484211737, + .00000000000015393776174455408, + -.00000000000036870428315837678, + .00000000000036920375082080089, + -.00000000000009383417223663699, + .00000000000009433398189512690, + .00000000000041481318704258568, + -.00000000000003792316480209314, + .00000000000008403156304792424, + -.00000000000034262934348285429, + .00000000000043712191957429145, + -.00000000000010475750058776541, + -.00000000000011118671389559323, + .00000000000037549577257259853, + .00000000000013912841212197565, + .00000000000010775743037572640, + .00000000000029391859187648000, + -.00000000000042790509060060774, + .00000000000022774076114039555, + .00000000000010849569622967912, + -.00000000000023073801945705758, + .00000000000015761203773969435, + .00000000000003345710269544082, + -.00000000000041525158063436123, + .00000000000032655698896907146, + -.00000000000044704265010452446, + .00000000000034527647952039772, + -.00000000000007048962392109746, + .00000000000011776978751369214, + -.00000000000010774341461609578, + .00000000000021863343293215910, + .00000000000024132639491333131, + .00000000000039057462209830700, + -.00000000000026570679203560751, + .00000000000037135141919592021, + -.00000000000017166921336082431, + -.00000000000028658285157914353, + -.00000000000023812542263446809, + .00000000000006576659768580062, + -.00000000000028210143846181267, + .00000000000010701931762114254, + .00000000000018119346366441110, + .00000000000009840465278232627, + -.00000000000033149150282752542, + -.00000000000018302857356041668, + -.00000000000016207400156744949, + .00000000000048303314949553201, + -.00000000000071560553172382115, + .00000000000088821239518571855, + -.00000000000030900580513238244, + -.00000000000061076551972851496, + .00000000000035659969663347830, + .00000000000035782396591276383, + -.00000000000046226087001544578, + .00000000000062279762917225156, + .00000000000072838947272065741, + .00000000000026809646615211673, + -.00000000000010960825046059278, + .00000000000002311949383800537, + -.00000000000058469058005299247, + -.00000000000002103748251144494, + -.00000000000023323182945587408, + -.00000000000042333694288141916, + -.00000000000043933937969737844, + .00000000000041341647073835565, + .00000000000006841763641591466, + .00000000000047585534004430641, + .00000000000083679678674757695, + -.00000000000085763734646658640, + .00000000000021913281229340092, + -.00000000000062242842536431148, + -.00000000000010983594325438430, + .00000000000065310431377633651, + -.00000000000047580199021710769, + -.00000000000037854251265457040, + .00000000000040939233218678664, + .00000000000087424383914858291, + .00000000000025218188456842882, + -.00000000000003608131360422557, + -.00000000000050518555924280902, + .00000000000078699403323355317, + -.00000000000067020876961949060, + .00000000000016108575753932458, + .00000000000058527188436251509, + -.00000000000035246757297904791, + -.00000000000018372084495629058, + .00000000000088606689813494916, + .00000000000066486268071468700, + .00000000000063831615170646519, + .00000000000025144230728376072, + -.00000000000017239444525614834 +}; + +/* + * Extra precision variant, returning struct {double a, b;}; + * log(x) = a+b to 63 bits, with a rounded to 26 bits. + */ +struct Double +__log__D(double x) +{ + int m, j; + double F, f, g, q, u, v, u2; + volatile double u1; + struct Double r; + + /* Argument reduction: 1 <= g < 2; x/2^m = g; */ + /* y = F*(1 + f/F) for |f| <= 2^-8 */ + + m = logb(x); + g = ldexp(x, -m); + if (m == -1022) { + j = logb(g), m += j; + g = ldexp(g, -j); + } + j = tgN*(g-1) + .5; + F = (1.0/tgN) * j + 1; + f = g - F; + + g = 1/(2*F+f); + u = 2*f*g; + v = u*u; + q = u*v*(A1 + v*(A2 + v*(A3 + v*A4))); + if (m | j) + u1 = u + 513, u1 -= 513; + else + u1 = u, TRUNC(u1); + u2 = (2.0*(f - F*u1) - u1*f) * g; + + u1 += m*logF_head[tgN] + logF_head[j]; + + u2 += logF_tail[j]; u2 += q; + u2 += logF_tail[tgN]*m; + r.a = u1 + u2; /* Only difference is here */ + TRUNC(r.a); + r.b = (u1 - r.a) + u2; + return (r); +} + +static const double p1 = 0x1.555555555553ep-3; +static const double p2 = -0x1.6c16c16bebd93p-9; +static const double p3 = 0x1.1566aaf25de2cp-14; +static const double p4 = -0x1.bbd41c5d26bf1p-20; +static const double p5 = 0x1.6376972bea4d0p-25; +static const double ln2hi = 0x1.62e42fee00000p-1; +static const double ln2lo = 0x1.a39ef35793c76p-33; +static const double lnhuge = 0x1.6602b15b7ecf2p9; +static const double lntiny = -0x1.77af8ebeae354p9; +static const double invln2 = 0x1.71547652b82fep0; + +double __exp__D(double x, double c) +{ + double z,hi,lo; + int k; + + if (x != x) /* x is NaN */ + return(x); + if ( x <= lnhuge ) { + if ( x >= lntiny ) { + + /* argument reduction : x --> x - k*ln2 */ + z = invln2*x; + k = z + copysign(.5, x); + + /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */ + + hi=(x-k*ln2hi); /* Exact. */ + x= hi - (lo = k*ln2lo-c); + /* return 2^k*[1+x+x*c/(2+c)] */ + z=x*x; + c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); + c = (x*c)/(2.0-c); + + return scalbn(1.+(hi-(lo - c)), k); + } + /* end of x > lntiny */ + + else + /* exp(-big#) underflows to zero */ + if(isfinite(x)) return(scalbn(1.0,-5000)); + + /* exp(-INF) is zero */ + else return(0.0); + } + /* end of x < lnhuge */ + + else + /* exp(INF) is INF, exp(+big#) overflows to INF */ + return( isfinite(x) ? scalbn(1.0,5000) : x); +} + + + +/* METHOD: + * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)) + * At negative integers, return NaN and raise invalid. + * + * x < 6.5: + * Use argument reduction G(x+1) = xG(x) to reach the + * range [1.066124,2.066124]. Use a rational + * approximation centered at the minimum (x0+1) to + * ensure monotonicity. + * + * x >= 6.5: Use the asymptotic approximation (Stirling's formula) + * adjusted for equal-ripples: + * + * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x)) + * + * Keep extra precision in multiplying (x-.5)(log(x)-1), to + * avoid premature round-off. + * + * Special values: + * -Inf: return NaN and raise invalid; + * negative integer: return NaN and raise invalid; + * other x ~< 177.79: return +-0 and raise underflow; + * +-0: return +-Inf and raise divide-by-zero; + * finite x ~> 171.63: return +Inf and raise overflow; + * +Inf: return +Inf; + * NaN: return NaN. + * + * Accuracy: tgamma(x) is accurate to within + * x > 0: error provably < 0.9ulp. + * Maximum observed in 1,000,000 trials was .87ulp. + * x < 0: + * Maximum observed error < 4ulp in 1,000,000 trials. + */ + + +/* + * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval + * [1.066.., 2.066..] accurate to 4.25e-19. + */ +#define LEFT -.3955078125 /* left boundary for rat. approx */ +#define x0 .461632144968362356785 /* xmin - 1 */ + +#define a0_hi 0.88560319441088874992 +#define a0_lo -.00000000000000004996427036469019695 +#define P0 6.21389571821820863029017800727e-01 +#define P1 2.65757198651533466104979197553e-01 +#define P2 5.53859446429917461063308081748e-03 +#define P3 1.38456698304096573887145282811e-03 +#define P4 2.40659950032711365819348969808e-03 +#define Q0 1.45019531250000000000000000000e+00 +#define Q1 1.06258521948016171343454061571e+00 +#define Q2 -2.07474561943859936441469926649e-01 +#define Q3 -1.46734131782005422506287573015e-01 +#define Q4 3.07878176156175520361557573779e-02 +#define Q5 5.12449347980666221336054633184e-03 +#define Q6 -1.76012741431666995019222898833e-03 +#define Q7 9.35021023573788935372153030556e-05 +#define Q8 6.13275507472443958924745652239e-06 +/* + * Constants for large x approximation (x in [6, Inf]) + * (Accurate to 2.8*10^-19 absolute) + */ +#define lns2pi_hi 0.418945312500000 +#define lns2pi_lo -.000006779295327258219670263595 +#define Pa0 8.33333333333333148296162562474e-02 +#define Pa1 -2.77777777774548123579378966497e-03 +#define Pa2 7.93650778754435631476282786423e-04 +#define Pa3 -5.95235082566672847950717262222e-04 +#define Pa4 8.41428560346653702135821806252e-04 +#define Pa5 -1.89773526463879200348872089421e-03 +#define Pa6 5.69394463439411649408050664078e-03 +#define Pa7 -1.44705562421428915453880392761e-02 + +static const double zero = 0., one = 1.0, tiny = 1e-300; + +/* + * returns (z+c)^2 * P(z)/Q(z) + a0 + */ +static struct Double +ratfun_gam(double z, double c) +{ + double p, q; + struct Double r, t; + + q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8))))))); + p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4))); + + /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */ + p = p/q; + t.a = z, TRUNC(t.a); /* t ~= z + c */ + t.b = (z - t.a) + c; + t.b *= (t.a + z); + q = (t.a *= t.a); /* t = (z+c)^2 */ + TRUNC(t.a); + t.b += (q - t.a); + r.a = p, TRUNC(r.a); /* r = P/Q */ + r.b = p - r.a; + t.b = t.b*p + t.a*r.b + a0_lo; + t.a *= r.a; /* t = (z+c)^2*(P/Q) */ + r.a = t.a + a0_hi, TRUNC(r.a); + r.b = ((a0_hi-r.a) + t.a) + t.b; + return (r); /* r = a0 + t */ +} + +/* + * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error. + */ +static struct Double +large_gam(double x) +{ + double z, p; + struct Double t, u, v; + + z = one/(x*x); + p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7)))))); + p = p/x; + + u = __log__D(x); + u.a -= one; + v.a = (x -= .5); + TRUNC(v.a); + v.b = x - v.a; + t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */ + t.b = v.b*u.a + x*u.b; + /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */ + t.b += lns2pi_lo; t.b += p; + u.a = lns2pi_hi + t.b; u.a += t.a; + u.b = t.a - u.a; + u.b += lns2pi_hi; u.b += t.b; + return (u); +} +/* + * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.) + * It also has correct monotonicity. + */ +static double +small_gam(double x) +{ + double y, ym1, t; + struct Double yy, r; + y = x - one; + ym1 = y - one; + if (y <= 1.0 + (LEFT + x0)) { + yy = ratfun_gam(y - x0, 0); + return (yy.a + yy.b); + } + r.a = y; + TRUNC(r.a); + yy.a = r.a - one; + y = ym1; + yy.b = r.b = y - yy.a; + /* Argument reduction: G(x+1) = x*G(x) */ + ym1 = y-one; + while (ym1 > LEFT + x0) { + t = r.a*yy.a; + r.b = r.a*yy.b + y*r.b; + r.a = t; + TRUNC(r.a); + r.b += (t - r.a); + + y = ym1; + ym1-=one; + yy.a-=one; + } + + /* Return r*tgamma(y). */ + yy = ratfun_gam(y - x0, 0); + y = r.b*(yy.a + yy.b) + r.a*yy.b; + y += yy.a*r.a; + return (y); +} +/* + * Good on (0, 1+x0+LEFT]. Accurate to 1ulp. + */ +static double +smaller_gam(double x) +{ + double t, d; + struct Double r, xx; + if (x < x0 + LEFT) { + t = x, TRUNC(t); + d = (t+x)*(x-t); + t *= t; + xx.a = (t + x), TRUNC(xx.a); + xx.b = x - xx.a; xx.b += t; xx.b += d; + t = (one-x0); t += x; + d = (one-x0); d -= t; d += x; + x = xx.a + xx.b; + } else { + xx.a = x, TRUNC(xx.a); + xx.b = x - xx.a; + t = x - x0; + d = (-x0 -t); d += x; + } + r = ratfun_gam(t, d); + d = r.a/x, TRUNC(d); + r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b; + return (d + r.a/x); +} + +static double +neg_gam(double x) +{ + int sgn = 1; + struct Double lg, lsine; + double y, z; + + y = ceil(x); + if (y == x) /* Negative integer. */ + return ((x - x) / zero); + z = y - x; + if (z > 0.5) + z = one - z; + y = 0.5 * y; + if (y == ceil(y)) + sgn = -1; + if (z < .25) + z = sin(M_PI*z); + else + z = cos(M_PI*(0.5-z)); + /* Special case: G(1-x) = Inf; G(x) may be nonzero. */ + if (x < -170) { + if (x < -190) + return ((double)sgn*tiny*tiny); + y = one - x; /* exact: 128 < |x| < 255 */ + lg = large_gam(y); + lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */ + lg.a -= lsine.a; /* exact (opposite signs) */ + lg.b -= lsine.b; + y = -(lg.a + lg.b); + z = (y + lg.a) + lg.b; + y = __exp__D(y, z); + if (sgn < 0) y = -y; + return (y); + } + y = one-x; + if (one-y == x) + y = tgamma(y); + else /* 1-x is inexact */ + y = -x*tgamma(-x); + if (sgn < 0) y = -y; + return (M_PI / (y*z)); +} + +double olm_tgamma(double x) +{ + struct Double u; + + if (isgreaterequal(x, 6)) { + if(x > 171.63) + return (x / zero); + u = large_gam(x); + return(__exp__D(u.a, u.b)); + } else if (isgreaterequal(x, 1.0 + LEFT + x0)) + return (small_gam(x)); + else if (isgreater(x, 1.e-17)) + return (smaller_gam(x)); + else if (isgreater(x, -1.e-17)) { + if (x != 0.0) + u.a = one - tiny; /* raise inexact */ + return (one/x); + } else if (!isfinite(x)) + return (x - x); /* x is NaN or -Inf */ + else + return (neg_gam(x)); +} +// clang-format on +} // anonymous namespace + +double reference_tgamma(double x) { return olm_tgamma(x); } + #pragma mark - #pragma mark Double testing @@ -5813,3 +6602,4 @@ long double reference_erfl(long double x) { return erf(x); } double reference_erfc(double x) { return erfc(x); } double reference_erf(double x) { return erf(x); } +long double reference_tgammal(long double x) { return olm_tgamma(x); } diff --git a/test_conformance/math_brute_force/reference_math.h b/test_conformance/math_brute_force/reference_math.h index b740787ff5..fd5e688d4a 100644 --- a/test_conformance/math_brute_force/reference_math.h +++ b/test_conformance/math_brute_force/reference_math.h @@ -116,6 +116,11 @@ double reference_ldexp(double x, int n); double reference_assignment(double x); int reference_not(double x); + +double reference_erfc(double x); +double reference_erf(double x); +double reference_tgamma(double x); + // -- for testing fast-relaxed double reference_relaxed_acos(double); @@ -238,6 +243,6 @@ int reference_notl(long double x); long double reference_erfcl(long double x); long double reference_erfl(long double x); -double reference_erfc(double x); -double reference_erf(double x); +long double reference_tgammal(long double x); + #endif diff --git a/test_conformance/math_brute_force/unary_double.cpp b/test_conformance/math_brute_force/unary_double.cpp index 74689a6809..965909b09d 100644 --- a/test_conformance/math_brute_force/unary_double.cpp +++ b/test_conformance/math_brute_force/unary_double.cpp @@ -79,6 +79,7 @@ struct TestInfo int isRangeLimited; // 1 if the function is only to be evaluated over a // range float half_sin_cos_tan_limit; + float tgamma_arg_limit; bool relaxedMode; // True if test is running in relaxed mode, false // otherwise. }; @@ -99,6 +100,9 @@ cl_int Test(cl_uint job_id, cl_uint thread_id, void *data) Force64BitFPUPrecision(); + int isRangeLimited = job->isRangeLimited; + float tgamma_arg_limit = job->tgamma_arg_limit; + cl_event e[VECTOR_SIZE_COUNT]; cl_ulong *out[VECTOR_SIZE_COUNT]; if (gHostFill) @@ -240,6 +244,15 @@ cl_int Test(cl_uint job_id, cl_uint thread_id, void *data) float err = Bruteforce_Ulp_Error_Double(test, correct); int fail = !(fabsf(err) <= ulps); + if (isRangeLimited) + { + if (tgamma_arg_limit > 0 && fabs(s[j]) > tgamma_arg_limit) + { + err = 0; + fail = 0; + } + } + if (fail) { if (ftz || relaxedMode) @@ -398,6 +411,14 @@ int TestFunc_Double_Double(const Func *f, MTdata d, bool relaxedMode) } } + test_info.isRangeLimited = 0; + test_info.tgamma_arg_limit = 0.f; + if (0 == strcmp(f->name, "tgamma")) + { + test_info.isRangeLimited = 1; + test_info.tgamma_arg_limit = 1755.455f; + } + // Init the kernels BuildKernelInfo build_info{ test_info.threadCount, test_info.k, test_info.programs, f->nameInCode, diff --git a/test_conformance/math_brute_force/unary_float.cpp b/test_conformance/math_brute_force/unary_float.cpp index 2761ab979e..8aa06ba3dd 100644 --- a/test_conformance/math_brute_force/unary_float.cpp +++ b/test_conformance/math_brute_force/unary_float.cpp @@ -78,6 +78,8 @@ struct TestInfo int isRangeLimited; // 1 if the function is only to be evaluated over a // range float half_sin_cos_tan_limit; + float tgamma_arg_limit; + bool relaxedMode; // True if test is running in relaxed mode, false // otherwise. }; @@ -103,6 +105,7 @@ cl_int Test(cl_uint job_id, cl_uint thread_id, void *data) int isRangeLimited = job->isRangeLimited; float half_sin_cos_tan_limit = job->half_sin_cos_tan_limit; + float tgamma_arg_limit = job->tgamma_arg_limit; int ftz = job->ftz; cl_event e[VECTOR_SIZE_COUNT]; @@ -352,11 +355,20 @@ cl_int Test(cl_uint job_id, cl_uint thread_id, void *data) } // half_sin/cos/tan are only valid between +-2**16, Inf, NaN - if (isRangeLimited - && fabsf(s[j]) > MAKE_HEX_FLOAT(0x1.0p16f, 0x1L, 16) - && fabsf(s[j]) < INFINITY) + if (isRangeLimited) { - if (fabsf(test) <= half_sin_cos_tan_limit) + if (half_sin_cos_tan_limit > 0 + && fabsf(s[j]) > MAKE_HEX_FLOAT(0x1.0p16f, 0x1L, 16) + && fabsf(s[j]) < INFINITY) + { + if (fabsf(test) <= half_sin_cos_tan_limit) + { + err = 0; + fail = 0; + } + } + else if (tgamma_arg_limit > 0 + && fabsf(s[j]) > tgamma_arg_limit) { err = 0; fail = 0; @@ -548,6 +560,7 @@ int TestFunc_Float_Float(const Func *f, MTdata d, bool relaxedMode) // Check for special cases for unary float test_info.isRangeLimited = 0; test_info.half_sin_cos_tan_limit = 0; + test_info.tgamma_arg_limit = 0; if (0 == strcmp(f->name, "half_sin") || 0 == strcmp(f->name, "half_cos")) { test_info.isRangeLimited = 1; @@ -562,6 +575,11 @@ int TestFunc_Float_Float(const Func *f, MTdata d, bool relaxedMode) test_info.half_sin_cos_tan_limit = INFINITY; // out of range resut from finite inputs must be numeric } + else if (0 == strcmp(f->name, "tgamma")) + { + test_info.isRangeLimited = 1; + test_info.tgamma_arg_limit = 1755.455f; + } bool correctlyRounded = strcmp(f->name, "sqrt_cr") == 0; diff --git a/test_conformance/math_brute_force/unary_half.cpp b/test_conformance/math_brute_force/unary_half.cpp index 56565cc3d3..5e62bb64c9 100644 --- a/test_conformance/math_brute_force/unary_half.cpp +++ b/test_conformance/math_brute_force/unary_half.cpp @@ -78,6 +78,8 @@ cl_int TestHalf(cl_uint job_id, cl_uint thread_id, void *data) int isRangeLimited = job->isRangeLimited; float half_sin_cos_tan_limit = job->half_sin_cos_tan_limit; + float tgamma_arg_limit = job->tgamma_arg_limit; + int ftz = job->ftz; std::vector s(0); @@ -229,11 +231,21 @@ cl_int TestHalf(cl_uint job_id, cl_uint thread_id, void *data) int fail = !(fabsf(err) <= ulps); // half_sin/cos/tan are only valid between +-2**16, Inf, NaN - if (isRangeLimited - && fabsf(s[j]) > MAKE_HEX_FLOAT(0x1.0p16f, 0x1L, 16) - && fabsf(s[j]) < INFINITY) + if (isRangeLimited) { - if (fabsf(test) <= half_sin_cos_tan_limit) + + if (half_sin_cos_tan_limit > 0 + && fabsf(s[j]) > MAKE_HEX_FLOAT(0x1.0p16f, 0x1L, 16) + && fabsf(s[j]) < INFINITY) + { + if (fabsf(test) <= half_sin_cos_tan_limit) + { + err = 0; + fail = 0; + } + } + else if (tgamma_arg_limit > 0 + && fabsf(s[j]) > tgamma_arg_limit) { err = 0; fail = 0; @@ -406,6 +418,7 @@ int TestFunc_Half_Half(const Func *f, MTdata d, bool relaxedMode) // Check for special cases for unary float test_info.isRangeLimited = 0; test_info.half_sin_cos_tan_limit = 0; + test_info.tgamma_arg_limit = 0; if (0 == strcmp(f->name, "half_sin") || 0 == strcmp(f->name, "half_cos")) { test_info.isRangeLimited = 1; @@ -420,6 +433,11 @@ int TestFunc_Half_Half(const Func *f, MTdata d, bool relaxedMode) test_info.half_sin_cos_tan_limit = INFINITY; // out of range resut from finite inputs must be numeric } + else if (0 == strcmp(f->name, "tgamma")) + { + test_info.isRangeLimited = 1; + test_info.tgamma_arg_limit = 1755.455f; + } // Init the kernels {