Skip to content

Commit d192546

Browse files
committed
60
Signed-off-by: Jess Frazelle <[email protected]>
1 parent 20e90be commit d192546

File tree

1 file changed

+212
-0
lines changed

1 file changed

+212
-0
lines changed

results/prompt_60.md

Lines changed: 212 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,212 @@
1+
# Prompt #60: ASCII spiral: '@' at (0,0), '#' at (1,0), '$' at (1,1), '%' at (0,1). Unwind the spiral by rotating those four points 90° CCW about the square’s center. Output the new 2×2 grid.
2+
3+
## OpenAI o3 (13 secs)
4+
%@
5+
$#
6+
7+
## Claude 4 Sonnet (7 secs)
8+
I need to rotate the 2×2 grid 90° counterclockwise about its center.
9+
10+
Initial grid:
11+
```
12+
% $
13+
@ #
14+
```
15+
16+
The center of a 2×2 grid is at (0.5, 0.5).
17+
18+
For a 90° CCW rotation about the center:
19+
- (0,0) → (1,0)
20+
- (1,0) → (1,1)
21+
- (1,1) → (0,1)
22+
- (0,1) → (0,0)
23+
24+
So:
25+
- '@' at (0,0) moves to (1,0)
26+
- '#' at (1,0) moves to (1,1)
27+
- '$' at (1,1) moves to (0,1)
28+
- '%' at (0,1) moves to (0,0)
29+
30+
New grid:
31+
```
32+
$ #
33+
% @
34+
```
35+
36+
## Gemini Pro (18 secs)
37+
Okay, let's break this down.
38+
39+
**1. Initial Grid & Coordinates:**
40+
41+
We can represent the initial grid and the coordinates (x,y) of each character, assuming (0,0) is the top-left:
42+
43+
* `@` at (0,0)
44+
* `#` at (1,0)
45+
* `%` at (0,1)
46+
* `$` at (1,1)
47+
48+
Visually:
49+
```
50+
@ #
51+
% $
52+
```
53+
54+
**2. Center of Rotation:**
55+
56+
The square is defined by the points (0,0), (1,0), (0,1), and (1,1).
57+
The center of this square is at x = (0+1)/2 = 0.5, and y = (0+1)/2 = 0.5.
58+
So, the center of rotation P is (0.5, 0.5).
59+
60+
**3. 90° CCW Rotation Formula:**
61+
62+
To rotate a point (x,y) 90° CCW around a point (px,py) to get (x',y'):
63+
x' = px - (y - py)
64+
y' = py + (x - px)
65+
66+
In our case, (px,py) = (0.5, 0.5):
67+
x' = 0.5 - (y - 0.5) = 0.5 - y + 0.5 = 1 - y
68+
y' = 0.5 + (x - 0.5) = 0.5 + x - 0.5 = x
69+
70+
So, the new point (x', y') is (1-y, x).
71+
72+
**4. Apply Rotation to Each Point:**
73+
74+
* **@ (0,0):**
75+
x' = 1 - 0 = 1
76+
y' = 0
77+
New position for '@': (1,0)
78+
79+
* **# (1,0):**
80+
x' = 1 - 0 = 1
81+
y' = 1
82+
New position for '#': (1,1)
83+
84+
* **$ (1,1):**
85+
x' = 1 - 1 = 0
86+
y' = 1
87+
New position for '$': (0,1)
88+
89+
* **% (0,1):**
90+
x' = 1 - 1 = 0
91+
y' = 0
92+
New position for '%': (0,0)
93+
94+
**5. Construct the New Grid:**
95+
96+
Mapping the characters to their new (x,y) coordinates:
97+
* (0,0) is now occupied by '%'
98+
* (1,0) is now occupied by '@'
99+
* (0,1) is now occupied by '$'
100+
* (1,1) is now occupied by '#'
101+
102+
So the new 2x2 grid is:
103+
104+
```
105+
% @
106+
$ #
107+
```
108+
109+
## DeepSeek Reasoner (246 secs)
110+
The task involves rotating the given 2×2 grid of characters 90 degrees counter-clockwise (CCW) about the center of the square. The original positions are:
111+
112+
- '@' at (0,0)
113+
- '#' at (1,0)
114+
- '$' at (1,1)
115+
- '%' at (0,1)
116+
117+
The center of the square is at (0.5, 0.5). To rotate a point (x, y) 90° CCW around (0.5, 0.5), use the transformation:
118+
- New x = 1 - y
119+
- New y = x
120+
121+
Apply this transformation to each point:
122+
123+
- '@' at (0,0):
124+
New position: (1 - 0, 0) = (1, 0)
125+
So, '@' moves to (1,0)
126+
127+
- '#' at (1,0):
128+
New position: (1 - 0, 1) = (1, 1)
129+
So, '#' moves to (1,1)
130+
131+
- '$' at (1,1):
132+
New position: (1 - 1, 1) = (0, 1)
133+
So, '$' moves to (0,1)
134+
135+
- '%' at (0,1):
136+
New position: (1 - 1, 0) = (0, 0)
137+
So, '%' moves to (0,0)
138+
139+
After rotation, the new grid assignments are:
140+
- (0,0): '%'
141+
- (1,0): '@'
142+
- (0,1): '$'
143+
- (1,1): '#'
144+
145+
Output the grid row by row, with the top row first (y=0) and the bottom row second (y=1):
146+
- Top row (y=0): (0,0) and (1,0) → "%@"
147+
- Bottom row (y=1): (0,1) and (1,1) → "$#"
148+
149+
Thus, the new 2×2 grid is:
150+
151+
```
152+
%@
153+
$#
154+
```
155+
156+
## Grok 3 (7 secs)
157+
Let's solve this step by step.
158+
159+
1. First, we identify the initial positions of the symbols in the 2×2 grid:
160+
- '@' at (0,0) — top-left
161+
- '#' at (1,0) — top-right
162+
- '$' at (1,1) — bottom-right
163+
- '%' at (0,1) — bottom-left
164+
165+
This forms the initial grid:
166+
```
167+
@ #
168+
% $
169+
```
170+
171+
2. Next, we need to rotate these points 90° counterclockwise (CCW) around the center of the 2×2 grid. The center of a 2×2 grid, with coordinates from (0,0) to (1,1), is at (0.5, 0.5).
172+
173+
3. To rotate a point (x, y) 90° CCW around a center (cx, cy), we use the transformation:
174+
- New x = cx - (y - cy)
175+
- New y = cy + (x - cx)
176+
177+
Applying this to each point with cx = 0.5 and cy = 0.5:
178+
- For '@' at (0,0):
179+
- New x = 0.5 - (0 - 0.5) = 0.5 - (-0.5) = 1
180+
- New y = 0.5 + (0 - 0.5) = 0.5 - 0.5 = 0
181+
- New position: (1,0)
182+
- For '#' at (1,0):
183+
- New x = 0.5 - (0 - 0.5) = 0.5 - (-0.5) = 1
184+
- New y = 0.5 + (1 - 0.5) = 0.5 + 0.5 = 1
185+
- New position: (1,1)
186+
- For '$' at (1,1):
187+
- New x = 0.5 - (1 - 0.5) = 0.5 - 0.5 = 0
188+
- New y = 0.5 + (1 - 0.5) = 0.5 + 0.5 = 1
189+
- New position: (0,1)
190+
- For '%' at (0,1):
191+
- New x = 0.5 - (1 - 0.5) = 0.5 - 0.5 = 0
192+
- New y = 0.5 + (0 - 0.5) = 0.5 - 0.5 = 0
193+
- New position: (0,0)
194+
195+
4. Now, we place the symbols in their new positions:
196+
- (0,0): '%'
197+
- (1,0): '@'
198+
- (0,1): '$'
199+
- (1,1): '#'
200+
201+
This forms the new grid:
202+
```
203+
% @
204+
$ #
205+
```
206+
207+
**Output:**
208+
```
209+
% @
210+
$ #
211+
```
212+

0 commit comments

Comments
 (0)