|
| 1 | +# Prompt #60: ASCII spiral: '@' at (0,0), '#' at (1,0), '$' at (1,1), '%' at (0,1). Unwind the spiral by rotating those four points 90° CCW about the square’s center. Output the new 2×2 grid. |
| 2 | + |
| 3 | +## OpenAI o3 (13 secs) |
| 4 | +%@ |
| 5 | +$# |
| 6 | + |
| 7 | +## Claude 4 Sonnet (7 secs) |
| 8 | +I need to rotate the 2×2 grid 90° counterclockwise about its center. |
| 9 | + |
| 10 | +Initial grid: |
| 11 | +``` |
| 12 | +% $ |
| 13 | +@ # |
| 14 | +``` |
| 15 | + |
| 16 | +The center of a 2×2 grid is at (0.5, 0.5). |
| 17 | + |
| 18 | +For a 90° CCW rotation about the center: |
| 19 | +- (0,0) → (1,0) |
| 20 | +- (1,0) → (1,1) |
| 21 | +- (1,1) → (0,1) |
| 22 | +- (0,1) → (0,0) |
| 23 | + |
| 24 | +So: |
| 25 | +- '@' at (0,0) moves to (1,0) |
| 26 | +- '#' at (1,0) moves to (1,1) |
| 27 | +- '$' at (1,1) moves to (0,1) |
| 28 | +- '%' at (0,1) moves to (0,0) |
| 29 | + |
| 30 | +New grid: |
| 31 | +``` |
| 32 | +$ # |
| 33 | +% @ |
| 34 | +``` |
| 35 | + |
| 36 | +## Gemini Pro (18 secs) |
| 37 | +Okay, let's break this down. |
| 38 | + |
| 39 | +**1. Initial Grid & Coordinates:** |
| 40 | + |
| 41 | +We can represent the initial grid and the coordinates (x,y) of each character, assuming (0,0) is the top-left: |
| 42 | + |
| 43 | +* `@` at (0,0) |
| 44 | +* `#` at (1,0) |
| 45 | +* `%` at (0,1) |
| 46 | +* `$` at (1,1) |
| 47 | + |
| 48 | +Visually: |
| 49 | +``` |
| 50 | +@ # |
| 51 | +% $ |
| 52 | +``` |
| 53 | + |
| 54 | +**2. Center of Rotation:** |
| 55 | + |
| 56 | +The square is defined by the points (0,0), (1,0), (0,1), and (1,1). |
| 57 | +The center of this square is at x = (0+1)/2 = 0.5, and y = (0+1)/2 = 0.5. |
| 58 | +So, the center of rotation P is (0.5, 0.5). |
| 59 | + |
| 60 | +**3. 90° CCW Rotation Formula:** |
| 61 | + |
| 62 | +To rotate a point (x,y) 90° CCW around a point (px,py) to get (x',y'): |
| 63 | +x' = px - (y - py) |
| 64 | +y' = py + (x - px) |
| 65 | + |
| 66 | +In our case, (px,py) = (0.5, 0.5): |
| 67 | +x' = 0.5 - (y - 0.5) = 0.5 - y + 0.5 = 1 - y |
| 68 | +y' = 0.5 + (x - 0.5) = 0.5 + x - 0.5 = x |
| 69 | + |
| 70 | +So, the new point (x', y') is (1-y, x). |
| 71 | + |
| 72 | +**4. Apply Rotation to Each Point:** |
| 73 | + |
| 74 | +* **@ (0,0):** |
| 75 | + x' = 1 - 0 = 1 |
| 76 | + y' = 0 |
| 77 | + New position for '@': (1,0) |
| 78 | + |
| 79 | +* **# (1,0):** |
| 80 | + x' = 1 - 0 = 1 |
| 81 | + y' = 1 |
| 82 | + New position for '#': (1,1) |
| 83 | + |
| 84 | +* **$ (1,1):** |
| 85 | + x' = 1 - 1 = 0 |
| 86 | + y' = 1 |
| 87 | + New position for '$': (0,1) |
| 88 | + |
| 89 | +* **% (0,1):** |
| 90 | + x' = 1 - 1 = 0 |
| 91 | + y' = 0 |
| 92 | + New position for '%': (0,0) |
| 93 | + |
| 94 | +**5. Construct the New Grid:** |
| 95 | + |
| 96 | +Mapping the characters to their new (x,y) coordinates: |
| 97 | +* (0,0) is now occupied by '%' |
| 98 | +* (1,0) is now occupied by '@' |
| 99 | +* (0,1) is now occupied by '$' |
| 100 | +* (1,1) is now occupied by '#' |
| 101 | + |
| 102 | +So the new 2x2 grid is: |
| 103 | + |
| 104 | +``` |
| 105 | +% @ |
| 106 | +$ # |
| 107 | +``` |
| 108 | + |
| 109 | +## DeepSeek Reasoner (246 secs) |
| 110 | +The task involves rotating the given 2×2 grid of characters 90 degrees counter-clockwise (CCW) about the center of the square. The original positions are: |
| 111 | + |
| 112 | +- '@' at (0,0) |
| 113 | +- '#' at (1,0) |
| 114 | +- '$' at (1,1) |
| 115 | +- '%' at (0,1) |
| 116 | + |
| 117 | +The center of the square is at (0.5, 0.5). To rotate a point (x, y) 90° CCW around (0.5, 0.5), use the transformation: |
| 118 | +- New x = 1 - y |
| 119 | +- New y = x |
| 120 | + |
| 121 | +Apply this transformation to each point: |
| 122 | + |
| 123 | +- '@' at (0,0): |
| 124 | + New position: (1 - 0, 0) = (1, 0) |
| 125 | + So, '@' moves to (1,0) |
| 126 | + |
| 127 | +- '#' at (1,0): |
| 128 | + New position: (1 - 0, 1) = (1, 1) |
| 129 | + So, '#' moves to (1,1) |
| 130 | + |
| 131 | +- '$' at (1,1): |
| 132 | + New position: (1 - 1, 1) = (0, 1) |
| 133 | + So, '$' moves to (0,1) |
| 134 | + |
| 135 | +- '%' at (0,1): |
| 136 | + New position: (1 - 1, 0) = (0, 0) |
| 137 | + So, '%' moves to (0,0) |
| 138 | + |
| 139 | +After rotation, the new grid assignments are: |
| 140 | +- (0,0): '%' |
| 141 | +- (1,0): '@' |
| 142 | +- (0,1): '$' |
| 143 | +- (1,1): '#' |
| 144 | + |
| 145 | +Output the grid row by row, with the top row first (y=0) and the bottom row second (y=1): |
| 146 | +- Top row (y=0): (0,0) and (1,0) → "%@" |
| 147 | +- Bottom row (y=1): (0,1) and (1,1) → "$#" |
| 148 | + |
| 149 | +Thus, the new 2×2 grid is: |
| 150 | + |
| 151 | +``` |
| 152 | +%@ |
| 153 | +$# |
| 154 | +``` |
| 155 | + |
| 156 | +## Grok 3 (7 secs) |
| 157 | +Let's solve this step by step. |
| 158 | + |
| 159 | +1. First, we identify the initial positions of the symbols in the 2×2 grid: |
| 160 | + - '@' at (0,0) — top-left |
| 161 | + - '#' at (1,0) — top-right |
| 162 | + - '$' at (1,1) — bottom-right |
| 163 | + - '%' at (0,1) — bottom-left |
| 164 | + |
| 165 | + This forms the initial grid: |
| 166 | + ``` |
| 167 | + @ # |
| 168 | + % $ |
| 169 | + ``` |
| 170 | + |
| 171 | +2. Next, we need to rotate these points 90° counterclockwise (CCW) around the center of the 2×2 grid. The center of a 2×2 grid, with coordinates from (0,0) to (1,1), is at (0.5, 0.5). |
| 172 | + |
| 173 | +3. To rotate a point (x, y) 90° CCW around a center (cx, cy), we use the transformation: |
| 174 | + - New x = cx - (y - cy) |
| 175 | + - New y = cy + (x - cx) |
| 176 | + |
| 177 | + Applying this to each point with cx = 0.5 and cy = 0.5: |
| 178 | + - For '@' at (0,0): |
| 179 | + - New x = 0.5 - (0 - 0.5) = 0.5 - (-0.5) = 1 |
| 180 | + - New y = 0.5 + (0 - 0.5) = 0.5 - 0.5 = 0 |
| 181 | + - New position: (1,0) |
| 182 | + - For '#' at (1,0): |
| 183 | + - New x = 0.5 - (0 - 0.5) = 0.5 - (-0.5) = 1 |
| 184 | + - New y = 0.5 + (1 - 0.5) = 0.5 + 0.5 = 1 |
| 185 | + - New position: (1,1) |
| 186 | + - For '$' at (1,1): |
| 187 | + - New x = 0.5 - (1 - 0.5) = 0.5 - 0.5 = 0 |
| 188 | + - New y = 0.5 + (1 - 0.5) = 0.5 + 0.5 = 1 |
| 189 | + - New position: (0,1) |
| 190 | + - For '%' at (0,1): |
| 191 | + - New x = 0.5 - (1 - 0.5) = 0.5 - 0.5 = 0 |
| 192 | + - New y = 0.5 + (0 - 0.5) = 0.5 - 0.5 = 0 |
| 193 | + - New position: (0,0) |
| 194 | + |
| 195 | +4. Now, we place the symbols in their new positions: |
| 196 | + - (0,0): '%' |
| 197 | + - (1,0): '@' |
| 198 | + - (0,1): '$' |
| 199 | + - (1,1): '#' |
| 200 | + |
| 201 | + This forms the new grid: |
| 202 | + ``` |
| 203 | + % @ |
| 204 | + $ # |
| 205 | + ``` |
| 206 | + |
| 207 | +**Output:** |
| 208 | +``` |
| 209 | +% @ |
| 210 | +$ # |
| 211 | +``` |
| 212 | + |
0 commit comments