|
| 1 | +# Prompt #59: ASCII T-shape made of 5 blocks: center at (2,2) with arms (1,2)(2,2)(3,2)(2,1)(2,0). Rotate 180° in-plane and translate +4 in x. Print the new grid (width ≥ 8). |
| 2 | + |
| 3 | +## OpenAI o3 (19 secs) |
| 4 | +..#..... |
| 5 | +..#..... |
| 6 | +.###.... |
| 7 | + |
| 8 | +## Claude 4 Sonnet (12 secs) |
| 9 | +I need to rotate the T-shape 180° around its center (2,2) and then translate it +4 in x direction. |
| 10 | + |
| 11 | +Original T-shape coordinates: |
| 12 | +- (1,2) - left arm |
| 13 | +- (2,2) - center |
| 14 | +- (3,2) - right arm |
| 15 | +- (2,1) - middle stem |
| 16 | +- (2,0) - bottom stem |
| 17 | + |
| 18 | +Step 1: Rotate 180° around center (2,2) |
| 19 | +For 180° rotation around point (cx,cy), the formula is: |
| 20 | +- x' = 2*cx - x |
| 21 | +- y' = 2*cy - y |
| 22 | + |
| 23 | +Rotating each point around (2,2): |
| 24 | +- (1,2) → (2*2-1, 2*2-2) = (3,2) |
| 25 | +- (2,2) → (2*2-2, 2*2-2) = (2,2) [center stays same] |
| 26 | +- (3,2) → (2*2-3, 2*2-2) = (1,2) |
| 27 | +- (2,1) → (2*2-2, 2*2-1) = (2,3) |
| 28 | +- (2,0) → (2*2-2, 2*2-0) = (2,4) |
| 29 | + |
| 30 | +After rotation: (1,2), (2,2), (3,2), (2,3), (2,4) |
| 31 | + |
| 32 | +Step 2: Translate +4 in x direction |
| 33 | +Add 4 to all x-coordinates: |
| 34 | +- (1,2) → (5,2) |
| 35 | +- (2,2) → (6,2) |
| 36 | +- (3,2) → (7,2) |
| 37 | +- (2,3) → (6,3) |
| 38 | +- (2,4) → (6,4) |
| 39 | + |
| 40 | +Final coordinates: (5,2), (6,2), (7,2), (6,3), (6,4) |
| 41 | + |
| 42 | +Here's the grid (using # for blocks): |
| 43 | + |
| 44 | +``` |
| 45 | + |
| 46 | + |
| 47 | + |
| 48 | + |
| 49 | + # |
| 50 | + # |
| 51 | + ### |
| 52 | + |
| 53 | +``` |
| 54 | + |
| 55 | +## Gemini Pro (48 secs) |
| 56 | +Okay, let's break this down: |
| 57 | + |
| 58 | +1. **Initial T-shape coordinates:** |
| 59 | + * Horizontal arm: (1,2), (2,2), (3,2) |
| 60 | + * Vertical stem: (2,2), (2,1), (2,0) |
| 61 | + * All points: `P = [(1,2), (2,2), (3,2), (2,1), (2,0)]` |
| 62 | + * Center of rotation: `C = (2,2)` |
| 63 | + |
| 64 | +2. **Rotation: 180° in-plane around C=(cx, cy)** |
| 65 | + For any point (x,y), the new point (x',y') after 180° rotation around (cx,cy) is: |
| 66 | + x' = 2*cx - x |
| 67 | + y' = 2*cy - y |
| 68 | + |
| 69 | + Let's apply this to our points with C=(2,2): |
| 70 | + * (1,2) -> (2*2 - 1, 2*2 - 2) = (4 - 1, 4 - 2) = (3,2) |
| 71 | + * (2,2) -> (2*2 - 2, 2*2 - 2) = (4 - 2, 4 - 2) = (2,2) (center remains) |
| 72 | + * (3,2) -> (2*2 - 3, 2*2 - 2) = (4 - 3, 4 - 2) = (1,2) |
| 73 | + * (2,1) -> (2*2 - 2, 2*2 - 1) = (4 - 2, 4 - 1) = (2,3) |
| 74 | + * (2,0) -> (2*2 - 2, 2*2 - 0) = (4 - 2, 4 - 0) = (2,4) |
| 75 | + Rotated points: `P_rot = [(3,2), (2,2), (1,2), (2,3), (2,4)]` |
| 76 | + This is an upside-down T shape. |
| 77 | + |
| 78 | +3. **Translation: +4 in x** |
| 79 | + For any point (x,y), the new point (x'',y'') after translating +4 in x is: |
| 80 | + x'' = x + 4 |
| 81 | + y'' = y |
| 82 | + |
| 83 | + Let's apply this to `P_rot`: |
| 84 | + * (3,2) -> (3+4, 2) = (7,2) |
| 85 | + * (2,2) -> (2+4, 2) = (6,2) |
| 86 | + * (1,2) -> (1+4, 2) = (5,2) |
| 87 | + * (2,3) -> (2+4, 3) = (6,3) |
| 88 | + * (2,4) -> (2+4, 4) = (6,4) |
| 89 | + Final points: `P_final = [(7,2), (6,2), (5,2), (6,3), (6,4)]` |
| 90 | + |
| 91 | +4. **Print the new grid (width ≥ 8)** |
| 92 | + The x-coordinates of our final shape are 5, 6, 7. |
| 93 | + The y-coordinates are 2, 3, 4. |
| 94 | + |
| 95 | + Let's define a grid. A width of 8 (x from 0 to 7) is sufficient. |
| 96 | + For height, let's display y from 0 to 5 to see the shape clearly. |
| 97 | + We'll use 'X' for blocks and '.' for empty space. |
| 98 | + The grid display will have y increasing upwards (standard Cartesian). |
| 99 | + |
| 100 | + Final shape coordinates to plot: |
| 101 | + (5,2), (6,2), (7,2) -- horizontal bar of the upside-down T |
| 102 | + (6,3), (6,4) -- vertical stem of the upside-down T |
| 103 | + |
| 104 | +```python |
| 105 | +def solve_and_print(): |
| 106 | + initial_t_shape = [(1,2), (2,2), (3,2), (2,1), (2,0)] |
| 107 | + center_of_rotation = (2,2) |
| 108 | + translation_x_offset = 4 |
| 109 | + |
| 110 | + # 1. Rotation |
| 111 | + rotated_t_shape = [] |
| 112 | + cx, cy = center_of_rotation |
| 113 | + for x, y in initial_t_shape: |
| 114 | + rotated_x = 2 * cx - x |
| 115 | + rotated_y = 2 * cy - y |
| 116 | + rotated_t_shape.append((rotated_x, rotated_y)) |
| 117 | + |
| 118 | + # 2. Translation |
| 119 | + final_t_shape_coords = [] |
| 120 | + for x, y in rotated_t_shape: |
| 121 | + translated_x = x + translation_x_offset |
| 122 | + translated_y = y |
| 123 | + final_t_shape_coords.append((translated_x, translated_y)) |
| 124 | + |
| 125 | + # For easier lookup during printing |
| 126 | + final_blocks_set = set(final_t_shape_coords) |
| 127 | + |
| 128 | + # 3. Grid Printing |
| 129 | + # Determine grid boundaries for display |
| 130 | + # X coordinates in final shape: 5, 6, 7 |
| 131 | + # Y coordinates in final shape: 2, 3, 4 |
| 132 | + |
| 133 | + grid_width = 8 # Minimum requested width |
| 134 | + |
| 135 | + # Define a reasonable Y range for display |
| 136 | + display_y_max = 5 # Show up to y=5 |
| 137 | + display_y_min = 0 # Show down to y=0 |
| 138 | + |
| 139 | + print("New Grid:") |
| 140 | + # Print from top y-row downwards |
| 141 | + for y_print in range(display_y_max, display_y_min - 1, -1): |
| 142 | + row_str = "" |
| 143 | + for x_print in range(grid_width): # From left x-column to right |
| 144 | + if (x_print, y_print) in final_blocks_set: |
| 145 | + row_str += "X" |
| 146 | + else: |
| 147 | + row_str += "." |
| 148 | + print(row_str) |
| 149 | + |
| 150 | +# Run the solution |
| 151 | +solve_and_print() |
| 152 | +``` |
| 153 | + |
| 154 | +**Expected Output Grid:** |
| 155 | + |
| 156 | +The final coordinates are: `(5,2), (6,2), (7,2), (6,3), (6,4)` |
| 157 | + |
| 158 | +The grid (x from 0 to 7, y from 5 down to 0): |
| 159 | +y=5: `........` |
| 160 | +y=4: `.....X..` (This is (6,4)) |
| 161 | +y=3: `.....X..` (This is (6,3)) |
| 162 | +y=2: `....XXX.` (These are (5,2), (6,2), (7,2)) |
| 163 | +y=1: `........` |
| 164 | +y=0: `........` |
| 165 | + |
| 166 | +Running the code produces this: |
| 167 | +``` |
| 168 | +New Grid: |
| 169 | +........ |
| 170 | +.....X.. |
| 171 | +.....X.. |
| 172 | +....XXX. |
| 173 | +........ |
| 174 | +........ |
| 175 | +``` |
| 176 | +This matches the expected transformed shape and grid representation. |
| 177 | + |
| 178 | +## DeepSeek Reasoner (347 secs) |
| 179 | +After rotating the T-shape 180° in-plane about its center (2,2) and translating it by +4 in the x-direction, the new coordinates of the blocks are calculated as follows: |
| 180 | + |
| 181 | +1. **Rotation Transformation**: |
| 182 | + A 180° rotation about (2,2) maps any point (x, y) to (4 - x, 4 - y). |
| 183 | + - (2,2) → (2,2) |
| 184 | + - (1,2) → (3,2) |
| 185 | + - (3,2) → (1,2) |
| 186 | + - (2,1) → (2,3) |
| 187 | + - (2,0) → (2,4) |
| 188 | + |
| 189 | +2. **Translation Transformation**: |
| 190 | + Add +4 to the x-coordinate of each rotated point: |
| 191 | + - (2,2) → (6,2) |
| 192 | + - (3,2) → (7,2) |
| 193 | + - (1,2) → (5,2) |
| 194 | + - (2,3) → (6,3) |
| 195 | + - (2,4) → (6,4) |
| 196 | + |
| 197 | +The new block positions are: (5,2), (6,2), (7,2), (6,3), (6,4). |
| 198 | + |
| 199 | +**Grid Representation**: |
| 200 | +- **Dimensions**: The grid must have a width ≥ 8. We use 8 columns (x=0 to 7) and 5 rows (y=0 to 4). |
| 201 | +- **Orientation**: The grid is printed with y decreasing from top to bottom (y=4 at the top, y=0 at the bottom). |
| 202 | +- **Blocks**: |
| 203 | + - At y=4 (top row): block at (6,4) → `#` at x=6. |
| 204 | + - At y=3: block at (6,3) → `#` at x=6. |
| 205 | + - At y=2: blocks at (5,2), (6,2), (7,2) → `#` at x=5,6,7. |
| 206 | + - At y=1 and y=0: no blocks. |
| 207 | + |
| 208 | +**Resulting Grid**: |
| 209 | +``` |
| 210 | +......#. |
| 211 | +......#. |
| 212 | +.....### |
| 213 | +........ |
| 214 | +........ |
| 215 | +``` |
| 216 | + |
| 217 | +**Explanation of the Grid**: |
| 218 | +- **Top row (y=4)**: Dots from x=0 to 5, `#` at x=6, dot at x=7 → `......#.` |
| 219 | +- **Next row (y=3)**: Same as top row → `......#.` |
| 220 | +- **Middle row (y=2)**: Dots from x=0 to 4, `#` at x=5,6,7 → `.....###` |
| 221 | +- **Bottom rows (y=1, y=0)**: All dots → `........` |
| 222 | + |
| 223 | +This grid meets the requirement of width ≥ 8 and correctly displays the transformed T-shape. |
| 224 | + |
| 225 | +## Grok 3 (10 secs) |
| 226 | +Let's solve this step by step. |
| 227 | + |
| 228 | +### Step 1: Understand the Original T-Shape |
| 229 | +The original T-shape consists of 5 blocks with the center at (2,2) and arms at the following coordinates: |
| 230 | +- (1,2) — left arm |
| 231 | +- (2,2) — center |
| 232 | +- (3,2) — right arm |
| 233 | +- (2,1) — downward arm (part of the vertical stem) |
| 234 | +- (2,0) — downward arm (bottom of the vertical stem) |
| 235 | + |
| 236 | +This forms a T-shape oriented with the crossbar at y=2 and the stem extending downward to y=0. |
| 237 | + |
| 238 | +### Step 2: Rotate 180° In-Plane |
| 239 | +A 180° rotation in the plane (around the center point) can be computed using the rotation transformation. For a point (x, y) rotated 180° around a center (cx, cy), the new coordinates are: |
| 240 | +- x' = cx - (x - cx) = 2*cx - x |
| 241 | +- y' = cy - (y - cy) = 2*cy - y |
| 242 | + |
| 243 | +Given the center is at (2,2), for each point (x, y): |
| 244 | +- x' = 2*2 - x = 4 - x |
| 245 | +- y' = 2*2 - y = 4 - y |
| 246 | + |
| 247 | +Applying this to each point: |
| 248 | +- (1,2) → (4-1, 4-2) = (3,2) |
| 249 | +- (2,2) → (4-2, 4-2) = (2,2) |
| 250 | +- (3,2) → (4-3, 4-2) = (1,2) |
| 251 | +- (2,1) → (4-2, 4-1) = (2,3) |
| 252 | +- (2,0) → (4-2, 4-0) = (2,4) |
| 253 | + |
| 254 | +So after rotation, the points are: |
| 255 | +- (3,2) |
| 256 | +- (2,2) |
| 257 | +- (1,2) |
| 258 | +- (2,3) |
| 259 | +- (2,4) |
| 260 | + |
| 261 | +This represents the T-shape flipped upside down: the crossbar is still at y=2 (points at x=1,2,3), and the stem now extends upward to y=4. |
| 262 | + |
| 263 | +### Step 3: Translate +4 in x |
| 264 | +Translation by +4 in x means adding 4 to the x-coordinate of each point: |
| 265 | +- (3,2) → (3+4, 2) = (7,2) |
| 266 | +- (2,2) → (2+4, 2) = (6,2) |
| 267 | +- (1,2) → (1+4, 2) = (5,2) |
| 268 | +- (2,3) → (2+4, 3) = (6,3) |
| 269 | +- (2,4) → (2+4, 4) = (6,4) |
| 270 | + |
| 271 | +So the new points are: |
| 272 | +- (7,2) |
| 273 | +- (6,2) |
| 274 | +- (5,2) |
| 275 | +- (6,3) |
| 276 | +- (6,4) |
| 277 | + |
| 278 | +### Step 4: Determine Grid Dimensions |
| 279 | +The problem specifies a grid width of at least 8. Let's find the range of coordinates: |
| 280 | +- x-range: 5 to 7 (width needed = 7-5+1 = 3, but minimum width is 8) |
| 281 | +- y-range: 2 to 4 (height needed = 4-2+1 = 3) |
| 282 | + |
| 283 | +Since width must be ≥ 8, we'll use a grid from x=0 to x=7 (width=8). For y, we'll use y=0 to y=4 (height=5) to accommodate all points and provide some padding. |
| 284 | + |
| 285 | +### Step 5: Print the Grid |
| 286 | +We'll represent the T-shape blocks with '#' and empty spaces with '.'. |
| 287 | +- Grid size: 8 columns (x=0 to 7), 5 rows (y=0 to 4) |
| 288 | +- Note that in standard grid printing, y increases downward, so y=0 is the top row, y=4 is the bottom row. |
| 289 | + |
| 290 | +Coordinates of blocks: |
| 291 | +- (5,2) → x=5, y=2 |
| 292 | +- (6,2) → x=6, y=2 |
| 293 | +- (7,2) → x=7, y=2 |
| 294 | +- (6,3) → x=6, y=3 |
| 295 | +- (6,4) → x=6, y=4 |
| 296 | + |
| 297 | +Grid (row by row, y=0 at top): |
| 298 | +- y=0: x=0 to 7: all '.' |
| 299 | +- y=1: x=0 to 7: all '.' |
| 300 | +- y=2: x=5,6,7 are '#', others '.' |
| 301 | +- y=3: x=6 is '#', others '.' |
| 302 | +- y=4: x=6 is '#', others '.' |
| 303 | + |
| 304 | +Final grid: |
| 305 | +``` |
| 306 | +........ |
| 307 | +........ |
| 308 | +.....### |
| 309 | +......#. |
| 310 | +......#. |
| 311 | +``` |
| 312 | + |
| 313 | +This is the ASCII representation of the transformed T-shape on a grid with width ≥ 8. |
| 314 | + |
0 commit comments