Skip to content

Commit 31ec7b6

Browse files
committed
Fixed grammar in the second part
1 parent eb2f5ee commit 31ec7b6

40 files changed

+196
-152
lines changed

docs/StardustDocs/topics/KPropertiesApi.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
<!---IMPORT org.jetbrains.kotlinx.dataframe.samples.api.ApiLevels-->
44

55
[`DataFrame`](DataFrame.md) can be used as an intermediate structure for data transformation between two data formats.
6-
If either source or destination is a Kotlin object, e.g. data class, it is convenient to use its properties
6+
If either source or destination is a Kotlin object, e.g., data class, it is convenient to use its properties
77
for typed data access in [`DataFrame`](DataFrame.md).
88
This can be done using `::` expression that provides [property references](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-property/)
99

@@ -31,7 +31,7 @@ val passengers = DataFrame.read("titanic.csv")
3131
<!---END-->
3232

3333
By default, [`DataFrame`](DataFrame.md) uses `name` and `returnType` of `KProperty` for typed access to data.
34-
When column name differs from property name, use `@ColumnName` annotation:
34+
When the column name differs from the property name, use `@ColumnName` annotation:
3535

3636
<!---FUN kproperties2-->
3737

@@ -49,4 +49,4 @@ val passengers = DataFrame.read("titanic.csv")
4949

5050
<!---END-->
5151

52-
The `titanic.csv` file could be found [here](https://github.com/Kotlin/dataframe/blob/master/data/titanic.csv).
52+
The `titanic.csv` file can be found [here](https://github.com/Kotlin/dataframe/blob/master/data/titanic.csv).

docs/StardustDocs/topics/getColumn.md

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,8 @@
22

33
<!---IMPORT org.jetbrains.kotlinx.dataframe.samples.api.Access-->
44

5-
Return column by column name or [column selector](ColumnSelectors.md) as [`DataColumn`](DataColumn.md). Throws exception if requested column doesn't exist.
5+
Return column by column name or [column selector](ColumnSelectors.md) as [`DataColumn`](DataColumn.md).
6+
Throw exception if the requested column doesn't exist.
67

78
<!---FUN getColumn-->
89
<tabs>
@@ -64,7 +65,8 @@ df.getColumnOrNull("age")
6465

6566
## getColumnGroup
6667

67-
Return top-level column by column name or [column selector](ColumnSelectors.md) as [`ColumnGroup`](DataColumn.md#columngroup). Throws exception if requested column doesn't exist or is not a `ColumnGroup`.
68+
Return top-level column by column name or [column selector](ColumnSelectors.md) as [`ColumnGroup`](DataColumn.md#columngroup).
69+
Throws exception if the requested column doesn't exist or is not a `ColumnGroup`.
6870

6971
<!---FUN getColumnGroup-->
7072
<tabs>
@@ -95,7 +97,7 @@ df.getColumnGroup("name")
9597

9698
## getColumns
9799

98-
Return list of selected columns.
100+
Return a list of selected columns.
99101

100102
<!---FUN getColumns-->
101103
<tabs>

docs/StardustDocs/topics/getRow.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ df[2]
1313
<dataFrame src="org.jetbrains.kotlinx.dataframe.samples.api.Access.getRowByIndex.html"/>
1414
<!---END-->
1515

16-
Get single [`DataRow`](DataRow.md) by [row condition](DataRow.md#row-conditions):
16+
Get a single [`DataRow`](DataRow.md) by [row condition](DataRow.md#row-conditions):
1717

1818
<!---FUN getRowByCondition-->
1919
<tabs>

docs/StardustDocs/topics/gettingStarted.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ To use the Kotlin DataFrame library with Jupyter notebooks or Datalore, follow t
1414
Kotlin is included in each IntelliJ IDEA release.
1515
Download and install [IntelliJ IDEA](https://www.jetbrains.com/idea/download/) to start using Kotlin.
1616

17-
## Create Kotlin project
17+
## Create a Kotlin project
1818

1919
1. In IntelliJ IDEA, select **File** | **New** | **Project**.
2020
2. In the panel on the left, select **New Project**.
@@ -82,7 +82,8 @@ Download the file `movies.csv` from [here](https://github.com/Kotlin/dataframe/b
8282

8383
Delete the `println()` functions and comments from your main function in `Main.kt`.
8484

85-
To import the movie sample data into a data frame and print it, inside your main function in `Main.kt`, add the following code:
85+
To import the movie sample data into a data frame and print it inside your main function in `Main.kt`,
86+
add the following code:
8687

8788
```kotlin
8889
// Import your data to a data frame
@@ -104,7 +105,7 @@ To print some information about your data frame and sort your data, add the foll
104105
// Sort your data alphabetically by title
105106
df = df.sortBy("title")
106107

107-
// Filter your data so that only comedy films remain, and print
108+
// Filter your data so that only comedy films remain and print
108109
df = df.filter { "genres"<String>().contains("Comedy") }
109110
df.print()
110111
```
@@ -150,7 +151,7 @@ movieId title genres
150151
3 9b30aff7943f44579e92c261f3adc193 Women in Black (1997) Fantasy|Suspenseful|Comedy
151152
</code-block>
152153

153-
Congratulations! You have successfully used the Kotlin DataFrame library to import, manipulate and export data.
154+
Congratulations! You have successfully used the Kotlin DataFrame library to import, manipulate, and export data.
154155

155156
## Next steps
156157
* Learn more about how to [import and export data](io.md)

docs/StardustDocs/topics/gradleReference.md

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ dataframes {
1010
}
1111
}
1212
```
13-
Note than name of the file and the interface are normalized: split by '_' and ' ' and joined to camel case.
13+
Note the name of the file and the interface are normalized: split by '_' and ' ' and joined to camel case.
1414
You can set parsing options for CSV:
1515
```kotlin
1616
dataframes {
@@ -23,8 +23,8 @@ dataframes {
2323
}
2424
}
2525
```
26-
In this case output path will depend on your directory structure. For project with package `org.example` path will be `build/generated/dataframe/main/kotlin/org/example/dataframe/Securities.Generated.kt
27-
`. Note that name of the Kotlin file is derived from the name of the data file with the suffix `.Generated` and the package
26+
In this case, the output path will depend on your directory structure. For project with package `org.example` a path will be `build/generated/dataframe/main/kotlin/org/example/dataframe/Securities.Generated.kt
27+
`. Note that the name of the Kotlin file is derived from the name of the data file with the suffix `.Generated` and the package
2828
is derived from the directory structure with child directory `dataframe`. The name of the **data schema** itself is `Securities`. You could specify it explicitly:
2929
```kotlin
3030
schema {
@@ -33,7 +33,7 @@ schema {
3333
name = "MyName"
3434
}
3535
```
36-
If you want to change default package for all schemas:
36+
If you want to change the default package for all schemas:
3737
```kotlin
3838
dataframes {
3939
packageName = "org.example"
@@ -60,7 +60,8 @@ dataframes {
6060
}
6161
}
6262
```
63-
By default, plugin will generate output in specified source set. Source set could be specified for all schemas or for specific schema:
63+
By default, the plugin will generate output in a specified source set.
64+
Source set could be specified for all schemas or for specific schema:
6465
```kotlin
6566
dataframes {
6667
packageName = "org.example"
@@ -76,7 +77,7 @@ dataframes {
7677
}
7778
}
7879
```
79-
But if you need generated files in other directory, set `src`:
80+
But if you need generated files in another directory, set `src`:
8081
```kotlin
8182
dataframes {
8283
// output: schemas/org/example/test/OtherName.Generated.kt
@@ -90,7 +91,7 @@ dataframes {
9091

9192
## DSL reference
9293
Inside `dataframes` you can configure parameters that will apply to all schemas. Configuration inside `schema` will override these defaults for specific schema.
93-
Here is full DSL for declaring data schemas:
94+
Here is the full DSL for declaring data schemas:
9495

9596
```kotlin
9697
dataframes {
@@ -101,10 +102,10 @@ dataframes {
101102
// KOTLIN SCRIPT: DataSchemaVisibility.INTERNAL DataSchemaVisibility.IMPLICIT_PUBLIC, DataSchemaVisibility.EXPLICIT_PUBLIC
102103
// GROOVY SCRIPT: 'internal', 'implicit_public', 'explicit_public'
103104

104-
withoutDefaultPath() // disable default path for all schemas
105-
// i.e. plugin won't copy "data" property of the schemas to generated companion objects
105+
withoutDefaultPath() // disable a default path for all schemas
106+
// i.e., plugin won't copy "data" property of the schemas to generated companion objects
106107

107-
// split property names by delimiters (arguments of this method), lowercase parts and join to camel case
108+
// split property names by delimiters (arguments of this method), lowercase parts, and join to camel case
108109
// enabled by default
109110
withNormalizationBy('_') // [optional: default: ['\t', '_', ' ']]
110111
withoutNormalization() // disable property names normalization
@@ -125,8 +126,8 @@ dataframes {
125126
withNormalizationBy('_') // enable property names normalization for this schema and use these delimiters
126127
withoutNormalization() // disable property names normalization for this schema
127128

128-
withoutDefaultPath() // disable default path for this schema
129-
withDefaultPath() // enable default path for this schema
129+
withoutDefaultPath() // disable a default path for this schema
130+
withDefaultPath() // enable a default path for this schema
130131
}
131132
}
132133
```
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
[//]: # (title: Group/ungroup/flatten columns)
22

33
* [`group`](group.md) — groups given columns into [`ColumnGroups`](DataColumn.md#columngroup).
4-
* [`ungroup`](ungroup.md) — ungroups given [`ColumnGroups`](DataColumn.md#columngroup) by replacing them with their children columns
4+
* [`ungroup`](ungroup.md) — ungroups given [`ColumnGroups`](DataColumn.md#columngroup) by replacing them with their children's columns
55
* [`flatten`](flatten.md) — recursively removes all column groupings under given [`ColumnGroups`](DataColumn.md#columngroup), remaining only [`ValueColumns`](DataColumn.md#valuecolumn) and [`FrameColumns`](DataColumn.md#framecolumn)
66

77
These operations are special cases of general [`move`](move.md) operation.

docs/StardustDocs/topics/hierarchical.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,8 @@
55
* [`ColumnGroup`](DataColumn.md#columngroup) is a group of [columns](DataColumn.md)
66
* [`FrameColumn`](DataColumn.md#framecolumn) is a column of [dataframes](DataFrame.md)
77

8-
You can read [`DataFrame`](DataFrame.md) [from json](read.md#reading-json) or [from in-memory object graph](createDataFrame.md#todataframe) preserving original tree structure.
8+
You can read [`DataFrame`](DataFrame.md) [from json](read.md#reading-json) or [from the in-memory object graph](createDataFrame.md#todataframe)
9+
preserving the original tree structure.
910

1011
Hierarchical columns can also appear as a result of some [modification operations](modify.md):
1112
* [group](group.md) produces [`ColumnGroup`](DataColumn.md#columngroup)

docs/StardustDocs/topics/inferType.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
<!---IMPORT org.jetbrains.kotlinx.dataframe.samples.api.Modify-->
44

5-
Changes type of the selected columns based on actual values stored in these columns. Resulting type of the column will be a nearest common supertype of all column values.
5+
Changes a type of the selected columns based on actual values stored in these columns. Resulting type of the column will be a nearest common supertype of all column values.
66

77
```text
88
inferType [ { columns } ]

docs/StardustDocs/topics/insert.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
<!---IMPORT org.jetbrains.kotlinx.dataframe.samples.api.Modify-->
44

5-
Inserts new column at specific position in [`DataFrame`](DataFrame.md).
5+
Insert a new column at a specific position in [`DataFrame`](DataFrame.md).
66

77
```text
88
insert
@@ -14,7 +14,7 @@ rowExpression: DataRow.(DataRow) -> Value
1414

1515
Similar to [add](add.md), but supports column positioning.
1616

17-
Create new column based on existing columns and insert it into [`DataFrame`](DataFrame.md):
17+
Create a new column based on existing columns and insert it into [`DataFrame`](DataFrame.md):
1818

1919
<!---FUN insert-->
2020
<tabs>

docs/StardustDocs/topics/installation.md

Lines changed: 9 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
[//]: # (title: Installation)
22

33
You can use the Kotlin DataFrame library in different environments — as any other JVM library.
4-
The following sections will show how to use the Kotlin DataFrame library in [Jupyter](#jupyter-notebook), [Datalore](#datalore) and in a [Gradle project](#gradle).
4+
The following sections will show how to use the Kotlin DataFrame library in [Jupyter](#jupyter-notebook), [Datalore,](#datalore) and in a [Gradle project](#gradle).
55

66
## Jupyter Notebook
77

@@ -13,21 +13,21 @@ the command line, for example:
1313
jupyter notebook
1414
```
1515

16-
In the notebook you only have to write single line to start using the Kotlin DataFrame library:
16+
In the notebook, you only have to write a single line to start using the Kotlin DataFrame library:
1717

1818
```text
1919
%use dataframe
2020
```
2121

22-
In this case the version which is bundled with the kernel, will be used.
22+
In this case, the version which is bundled with the kernel will be used.
2323
If you want to always use the latest version, add another magic before `%use dataframe`:
2424

2525
```text
2626
%useLatestDescriptors
2727
%use dataframe
2828
```
2929

30-
If you want to use specific version of the Kotlin DataFrame library, you can specify it in brackets:
30+
If you want to use a specific version of the Kotlin DataFrame library, you can specify it in brackets:
3131

3232
```text
3333
%use dataframe(%dataFrameVersion%)
@@ -156,11 +156,11 @@ tasks.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompile).configureEach {
156156
</tabs>
157157

158158
Note that it's better to use the same version for a library and plugin to avoid unpredictable errors.
159-
After plugin configuration you can try it out with [example](schemasGradle.md#annotation-processing).
159+
After plugin configuration, you can try it out, for [example](schemasGradle.md#annotation-processing).
160160

161161
### Custom configuration
162162

163-
If you want to avoid adding unnecessary dependency, you can choose from following artifacts:
163+
If you want to avoid adding unnecessary dependencies, you can choose from the following artifacts:
164164

165165
<tabs>
166166
<tab title="Kotlin DSL">
@@ -197,7 +197,7 @@ dependencies {
197197

198198
#### Linter configuration
199199

200-
We provide a Gradle plugin that generates interfaces by your data.
200+
We provide a Gradle plugin that generates interfaces based on your data structure.
201201
Use this configuration to prevent linter from complaining about formatting in the generated sources.
202202

203203
<tabs>
@@ -236,5 +236,6 @@ tasks.withType(org.jmailen.gradle.kotlinter.tasks.LintTask).all {
236236

237237
## Other build systems
238238

239-
If you are using Maven, Ivy or Bazel to configure your build, you can still use the Kotlin DataFrame library in your project.
239+
If you are using Maven, Ivy, or Bazel to configure your build,
240+
you can still use the Kotlin DataFrame library in your project.
240241
Just follow the instructions for your build system on [this page](https://search.maven.org/artifact/org.jetbrains.kotlinx/dataframe/0.8.1/jar).

0 commit comments

Comments
 (0)