Skip to content

Commit 89f3163

Browse files
committed
Fixed missed articles
1 parent b2f96b2 commit 89f3163

9 files changed

+33
-30
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -101,8 +101,8 @@ This table shows the mapping between main library components versions and minimu
101101

102102
| Kotlin DataFrame Version | Minimum Java Version | Kotlin Version | Kotlin Jupyter Version | OpenAPI version | Apache Arrow version |
103103
|--------------------------|----------------------|----------------|------------------------|-----------------|----------------------|
104-
| 0.10.0 | 8 |1.8.20 | 0.11.0-358 |2.1.13 | 11.0.0 |
105-
| 0.10.1 | 8 |1.8.20 | 0.11.0-358 |2.1.13 | 11.0.0 |
104+
| 0.10.0 | 8 |1.8.20 | 0.11.0-358 | 3.0.0 | 11.0.0 |
105+
| 0.10.1 | 8 |1.8.20 | 0.11.0-358 | 3.0.0 | 11.0.0 |
106106

107107
## Usage example
108108

docs/StardustDocs/topics/schemas.md

Lines changed: 12 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -3,21 +3,22 @@
33
<!---IMPORT org.jetbrains.kotlinx.dataframe.samples.api.Schemas-->
44

55
The Kotlin Dataframe library provides typed data access via [generation of extension properties](extensionPropertiesApi.md) for
6-
type `DataFrame<T>`, where
6+
a type `DataFrame<T>`, where
77
`T` is a marker class that represents `DataSchema` of [`DataFrame`](DataFrame.md).
88

99
Schema of [`DataFrame`](DataFrame.md) is a mapping from column names to column types of [`DataFrame`](DataFrame.md).
10-
It ignores order of columns in [`DataFrame`](DataFrame.md), but tracks column hierarchy.
10+
It ignores the order of columns in [`DataFrame`](DataFrame.md), but tracks column hierarchy.
1111

12-
In Jupyter environment compile-time [`DataFrame`](DataFrame.md) schema is synchronized with real-time data after every cell execution.
12+
In the Jupyter environment, compile-time [`DataFrame`](DataFrame.md)
13+
schema is synchronized with real-time data after every cell execution.
1314

1415
In IDEA projects, you can use the [Gradle plugin](schemasGradle.md#configuration) to extract schema from the dataset
1516
and generate extension properties.
1617

1718

18-
## Popular use cases with Data Schemas
19+
## Popular use cases for Data Schemas
1920

20-
Here's a list of the most popular use cases with Data Schemas.
21+
Here's a list of the most popular use cases for Data Schemas.
2122

2223
* [**Data Schemas in Gradle projects**](schemasGradle.md) <br/>
2324
If you are developing a server application and building it with Gradle.
@@ -29,15 +30,15 @@ Here's a list of the most popular use cases with Data Schemas.
2930
It's worth knowing how to reuse Data Schemas generated earlier.
3031

3132
* [**Custom Data Schemas**](schemasCustom.md) <br/>
32-
Sometimes it is necessary to create your own scheme.
33+
Sometimes it is necessary to create your own schema.
3334

34-
* [**Use external Data Schemas in Jupyter**](schemasExternalJupyter.md) <br/>
35+
* [**Use external Data Schemas in Jupyter Notebook**](schemasExternalJupyter.md) <br/>
3536
Sometimes it is convenient to extract reusable code from Jupyter Notebook into the Kotlin JVM library.
36-
Schema interfaces should also be extracted if this code uses Custom Data Schemas.
37+
Schema interfaces should also be extracted if this code uses custom Data Schemas.
3738

38-
* [**Import OpenAPI Schemas in Gradle project**](schemasImportOpenApiGradle.md) <br/>
39-
When you need to take data from the endpoint with OpenAPI Schema.
39+
* [**Import OpenAPI Schemas in a Gradle project**](schemasImportOpenApiGradle.md) <br/>
40+
When you are using a JSON API that provides an OpenAPI schema.
4041

41-
* [**Import Data Schemas, e.g. from OpenAPI, in Jupyter**](schemasImportOpenApiJupyter.md) <br/>
42+
* [**Import Data Schemas, e.g., from OpenAPI, in Jupyter**](schemasImportOpenApiJupyter.md) <br/>
4243
Similar to [importing OpenAPI Data Schemas in Gradle projects](schemasImportOpenApiGradle.md),
4344
you can also do this in Jupyter Notebooks.

docs/StardustDocs/topics/schemasCustom.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
<!---IMPORT org.jetbrains.kotlinx.dataframe.samples.api.Schemas-->
44

55
You can define your own [`DataSchema`](schema.md) interfaces and use them in functions and classes to represent [`DataFrame`](DataFrame.md) with
6-
specific set of columns:
6+
a specific set of columns:
77

88
```kotlin
99
@DataSchema
@@ -34,7 +34,7 @@ val df = dataFrameOf("name", "age", "weight")(
3434

3535
<!---END-->
3636

37-
Schema of `df` is compatible with `Person`, so auto-generated schema interface will inherit from it:
37+
Schema of `df` is compatible with `Person`, so the auto-generated schema interface will inherit from it:
3838

3939
```kotlin
4040
@DataSchema(isOpen = false)

docs/StardustDocs/topics/schemasExternalJupyter.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
Sometimes it is convenient to extract reusable code from Jupyter Notebook into the Kotlin JVM library.
66
Schema interfaces should also be extracted if this code uses [Custom Data Schemas](schemasCustom.md).
77

8-
In order to enable support them in Jupyter, you should register them in
8+
In order to enable to support them in Jupyter, you should register them in
99
library [integration class](https://github.com/Kotlin/kotlin-jupyter/blob/master/docs/libraries.md) with `useSchema`
1010
function:
1111

docs/StardustDocs/topics/schemasGradle.md

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,8 @@ In Gradle projects, the Kotlin DataFrame library provides
1010

1111
### Configuration
1212

13-
To use the [extension properties API](extensionPropertiesApi.md) in Gradle project add the `dataframe` plugin as follows:
13+
To use the [extension properties API](extensionPropertiesApi.md) in a Gradle project,
14+
add the `dataframe` plugin as follows:
1415

1516
<tabs>
1617
<tab title="Kotlin DSL">
@@ -58,7 +59,7 @@ interface Person {
5859
}
5960
```
6061

61-
#### Execute assemble task to generate type-safe accessors for schemas:
62+
#### Execute an `assemble` task to generate type-safe accessors for schemas:
6263

6364
<!---FUN useProperties-->
6465

@@ -76,7 +77,7 @@ teens.print()
7677

7778
### Schema inference
7879

79-
Specify schema with preferred method and execute the `assemble` task.
80+
Specify the schema with preferred method and execute the `assemble` task.
8081

8182
<tabs>
8283
<tab title="Method 1. Annotation processing">
@@ -85,7 +86,7 @@ Specify schema with preferred method and execute the `assemble` task.
8586
You can import schemas from a URL or from the relative path of a file.
8687
Relative path by default is resolved to the project root directory.
8788
You can configure it by [passing](https://kotlinlang.org/docs/ksp-quickstart.html#pass-options-to-processors) `dataframe.resolutionDir`
88-
option to preprocessor.
89+
an option to preprocessor.
8990
For example:
9091

9192
```kotlin
@@ -98,7 +99,7 @@ ksp {
9899
from the previous invocation, at least one character.**
99100

100101
For the following configuration, file `Repository.Generated.kt` will be generated to `build/generated/ksp/` folder in
101-
the same package as file containing the annotation.
102+
the same package as the file containing the annotation.
102103

103104
```kotlin
104105
@file:ImportDataSchema(
@@ -206,4 +207,4 @@ You can also always ctrl+click on the `PetStore.Pet` type to see all the generat
206207
If you experience any issues with the OpenAPI support (since there are many gotchas and edge-cases when converting
207208
something as
208209
type-fluid as JSON to a strongly typed language), please open an issue on
209-
the [Github repo](https://github.com/Kotlin/dataframe/issues).
210+
the [GitHub repo](https://github.com/Kotlin/dataframe/issues).

docs/StardustDocs/topics/schemasImportOpenApiGradle.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,4 +61,4 @@ You can also always ctrl+click on the `PetStore.Pet` type to see all the generat
6161
If you experience any issues with the OpenAPI support (since there are many gotchas and edge-cases when converting
6262
something as
6363
type-fluid as JSON to a strongly typed language), please open an issue on
64-
the [Github repo](https://github.com/Kotlin/dataframe/issues).
64+
the [GitHub repo](https://github.com/Kotlin/dataframe/issues).

docs/StardustDocs/topics/schemasImportOpenApiJupyter.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ Import the schema using any path (`String`), `URL`, or `File`:
1313
val PetStore = importDataSchema("https://petstore3.swagger.io/api/v3/openapi.json")
1414
```
1515

16-
and then from next cell you run and onwards, you can call, for example:
16+
and then from the next cell you run and onwards, you can call, for example:
1717

1818
```kotlin
1919
val df = PetStore.Pet.readJson("https://petstore3.swagger.io/api/v3/pet/findByStatus?status=available")

docs/StardustDocs/topics/schemasInheritance.md

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,23 +2,24 @@
22

33
<!---IMPORT org.jetbrains.kotlinx.dataframe.samples.api.Schemas-->
44

5-
In order to reduce amount of generated code, previously generated [`DataSchema`](schema.md) interfaces are reused and only new
5+
In order to reduce the amount of generated code,
6+
previously generated [`DataSchema`](schema.md) interfaces are reused and only new
67
properties are introduced
78

8-
Let's filter out all `null` values from `age` column and add one more column of type `Boolean`:
9+
Let's filter out all `null` values from `age` column and add one more column of a type `Boolean`:
910

1011
```kotlin
1112
val filtered = df.filter { age != null }.add("isAdult") { age!! > 18 }
1213
```
1314

14-
New schema interface for `filtered` variable will be derived from previously generated `DataFrameType`:
15+
The new schema interface for `filtered` variable will be derived from previously generated `DataFrameType`:
1516

1617
```kotlin
1718
@DataSchema
1819
interface DataFrameType1 : DataFrameType
1920
```
2021

21-
Extension properties for data access are generated only for new and overriden members of `DataFrameType1` interface:
22+
Extension properties for data access are generated only for new and override members of `DataFrameType1` interface:
2223

2324
```kotlin
2425
val ColumnsContainer<DataFrameType1>.age: DataColumn<Int> get() = this["age"] as DataColumn<Int>
@@ -27,7 +28,7 @@ val ColumnsContainer<DataFrameType1>.isAdult: DataColumn<Boolean> get() = this["
2728
val DataRow<DataFrameType1>.isAdult: String get() = this["isAdult"] as Boolean
2829
```
2930

30-
Then variable `filtered` is cast to new interface:
31+
Then variable `filtered` is cast to the new interface:
3132

3233
```kotlin
3334
val temp = filtered

docs/StardustDocs/topics/schemasJupyter.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ val temp = df
4949
val df = temp.cast<DataFrameType>()
5050
```
5151

52-
> _Note, that object instance after casting remains the same. See [cast](cast.md).
52+
> _Note that object instance after casting remains the same. See [cast](cast.md).
5353
5454
To log all these additional code executions, use cell magic
5555

0 commit comments

Comments
 (0)