Skip to content

Commit 98df92d

Browse files
authored
Converted all the types mentions to the links on the mentioned types pages (#278)
* Fixed the other * Fixed the review
1 parent d503352 commit 98df92d

33 files changed

+114
-85
lines changed

docs/StardustDocs/topics/DataColumn.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -156,7 +156,7 @@ df.filter { year > 2000 }
156156

157157
<!---END-->
158158

159-
To convert `ColumnAccessor` into [`DataColumn`](DataColumn.md) add values using `withValues` function:
159+
To convert [`ColumnAccessor`](columnAccessorsApi.md) into [`DataColumn`](DataColumn.md) add values using `withValues` function:
160160

161161
<!---FUN columnAccessorToColumn-->
162162

docs/StardustDocs/topics/KPropertiesApi.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,8 @@
33
<!---IMPORT org.jetbrains.kotlinx.dataframe.samples.api.ApiLevels-->
44

55
[`DataFrame`](DataFrame.md) can be used as an intermediate structure for data transformation between two data formats.
6-
If either source or destination is a Kotlin object, e.g. data class, it is convenient to use its properties for typed data access in [`DataFrame`](DataFrame.md).
6+
If either source or destination is a Kotlin object, e.g. data class, it is convenient to use its properties
7+
for typed data access in [`DataFrame`](DataFrame.md).
78
This can be done using `::` expression that provides [property references](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-property/)
89

910
<!---FUN kproperties1-->
@@ -29,7 +30,8 @@ val passengers = DataFrame.read("titanic.csv")
2930

3031
<!---END-->
3132

32-
By default, [`DataFrame`](DataFrame.md) uses `name` and `returnType` of `KProperty` for typed access to data. When column name differs from property name, use `ColumnName` annotation:
33+
By default, [`DataFrame`](DataFrame.md) uses `name` and `returnType` of `KProperty` for typed access to data.
34+
When column name differs from property name, use `@ColumnName` annotation:
3335

3436
<!---FUN kproperties2-->
3537

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,12 @@
11
[//]: # (title: Adjust schema)
22

3-
[`DataFrame`](DataFrame.md) interface has type argument `T` that doesn't affect contents of `DataFrame`, but marks `DataFrame` with a type that represents data schema that this `DataFrame` is supposed to have.
3+
[`DataFrame`](DataFrame.md) interface has type argument `T` that doesn't affect contents of [`DataFrame`](DataFrame.md),
4+
but marks [`DataFrame`](DataFrame.md) with a type that represents data schema that this [`DataFrame`](DataFrame.md) is supposed to have.
45
This argument is used to generate [extension properties](extensionPropertiesApi.md) for typed data access.
56

6-
Actual data in [`DataFrame`](DataFrame.md) may diverge from compile-time schema marker `T` due to dynamic nature of data inside `DataFrame`. However, at some points of code you may know exactly what `DataFrame` schema is expected.
7+
Actual data in [`DataFrame`](DataFrame.md) may diverge from compile-time schema marker `T` due to dynamic nature of data inside [`DataFrame`](DataFrame.md).
8+
However, at some points of code you may know exactly what [`DataFrame`](DataFrame.md) schema is expected.
79
To match your knowledge with expected real-time [`DataFrame`](DataFrame.md) contents you can use one of two functions:
8-
* [`cast`](cast.md) — change type argument of [`DataFrame`](DataFrame.md) to the expected schema without changing data in `DataFrame`.
10+
* [`cast`](cast.md) — change type argument of [`DataFrame`](DataFrame.md) to the expected schema without changing data in [`DataFrame`](DataFrame.md).
911
* [`convertTo`](convertTo.md) — convert [`DataFrame`](DataFrame.md) contents to match the expected schema.
1012

docs/StardustDocs/topics/apiLevels.md

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ By nature data frames are dynamic objects, column labels depend on the input sou
66
or deleted while wrangling. Kotlin, in contrast, is a statically typed language and all types are defined and verified
77
ahead of execution. That's why creating a flexible, handy, and, at the same time, safe API to a data frame is tricky.
88

9-
In Kotlin DataFrame library we provide four different ways to access columns, and, while they are essentially different, they
9+
In the Kotlin DataFrame library we provide four different ways to access columns, and, while they are essentially different, they
1010
look pretty similar in the data wrangling DSL.
1111

1212
## List of Access APIs
@@ -141,16 +141,18 @@ df.add("weight") { ... } // add a new column `weight`, calculated by some expres
141141
We don't need to interrupt a function call chain and declare a column accessor or generate new properties.
142142

143143
In contrast, generated [extension properties](extensionPropertiesApi.md) are the most convenient and the safest API.
144-
Using it, you can always be sure that you work with correct data and types. But its bottleneck is the moment of generation.
145-
To get new extension properties you have to run a cell in a notebook, which could lead to unnecessary variable declarations.
144+
Using it, you can always be sure that you work with correct data and types.
145+
But its bottleneck is the moment of generation.
146+
To get new extension properties you have to run a cell in a notebook,
147+
which could lead to unnecessary variable declarations.
146148
Currently, we are working on compiler a plugin that generates these properties on the fly while typing!
147149

148150
The [Column Accessors API](columnAccessorsApi.md) is a kind of trade-off between safety and needs to be written ahead of
149151
the execution type declaration. It was designed to better be able to write code in an IDE without a notebook experience.
150-
It provides type-safe access to columns but doesn't ensure that the columns really exist in a particular [`DataFrame`](DataFrame.md).
152+
It provides type-safe access to columns but doesn't ensure that the columns really exist in a particular data frame.
151153

152154
The [KProperties API](KPropertiesApi.md) is useful when you already have declared classed in your application business
153-
logic with fields that correspond columns of [`DataFrame`](DataFrame.md).
155+
logic with fields that correspond columns of a data frame.
154156

155157
<table>
156158
<tr>

docs/StardustDocs/topics/collectionsInterop.md

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,10 @@ _Kotlin DataFrame_ and _Kotlin Collection_ represent two different approaches to
77
* [`DataFrame`](DataFrame.md) stores data by fields/columns
88
* `Collection` stores data by records/rows
99

10-
Although [`DataFrame`](DataFrame.md) doesn't implement `Collection` or `Iterable` interface, it has many similar operations, such as [`filter`](filter.md), [`take`](sliceRows.md#take), [`first`](first.md), [`map`](map.md), [`groupBy`](groupBy.md) etc.
10+
Although [`DataFrame`](DataFrame.md) doesn't implement [`Collection`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-collection/#kotlin.collections.Collection) or [`Iterable`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-iterable/) interface, it has many similar operations,
11+
such as [`filter`](filter.md), [`take`](sliceRows.md#take), [`first`](first.md), [`map`](map.md), [`groupBy`](groupBy.md) etc.
1112

12-
[`DataFrame`](DataFrame.md) has two-way compatibility with `Map` and `List`:
13+
[`DataFrame`](DataFrame.md) has two-way compatibility with [`Map`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/) and [`List`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/):
1314
* `List<T>` -> `DataFrame<T>`: [toDataFrame](createDataFrame.md#todataframe)
1415
* `DataFrame<T>` -> `List<T>`: [toList](toList.md)
1516
* `Map<String, List<*>>` -> `DataFrame<*>`: [toDataFrame](createDataFrame.md#todataframe)
@@ -68,11 +69,13 @@ val df2 = df.add("c") { a + b }
6869

6970
<tip>
7071

71-
To enable extension properties generation you should use [dataframe plugin](gradle.md) for Gradle or [Kotlin jupyter kernel](installation.md)
72+
To enable extension properties generation you should use [dataframe plugin](gradle.md)
73+
for Gradle or [Kotlin jupyter kernel](installation.md)
7274

7375
</tip>
7476

75-
After data is transformed, [`DataFrame`](DataFrame.md) can be exported into `List` of another data class using [toList](toList.md) or [toListOf](toList.md#tolistof) extensions:
77+
After data is transformed, [`DataFrame`](DataFrame.md) can be exported
78+
into [`List`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/) of another data class using [toList](toList.md) or [toListOf](toList.md#tolistof) extensions:
7679

7780
<!---FUN listInterop4-->
7881

docs/StardustDocs/topics/convertTo.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
[//]: # (title: convertTo)
22
<!---IMPORT org.jetbrains.kotlinx.dataframe.samples.api.Modify-->
33

4-
[Converts](convert.md) columns in [`DataFrame`](DataFrame.md) to match given schema `Schema`
4+
[Converts](convert.md) columns in [`DataFrame`](DataFrame.md) to match given schema [`Schema`](schema.md).
55

66
```kotlin
77
convertTo<Schema>(excessiveColumns = ExcessiveColumns.Keep)

docs/StardustDocs/topics/createColumn.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,7 @@ values.toColumn("data", Infer.Nulls) // type: Any
8484

8585
### toColumnOf
8686

87-
Converts `Iterable` of values into column of given type
87+
Converts [`Iterable`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-iterable/) of values into column of given type
8888

8989
<!---FUN createValueColumnOfType-->
9090

docs/StardustDocs/topics/createDataFrame.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ map.toDataFrame()
134134

135135
<!---END-->
136136

137-
`DataFrame` from `Iterable` of objects:
137+
[`DataFrame`](DataFrame.md) from [`Iterable`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-iterable/) of objects:
138138

139139
<!---FUN readDataFrameFromObject-->
140140

@@ -148,7 +148,8 @@ val df = persons.toDataFrame()
148148

149149
<!---END-->
150150

151-
Scans object properties using reflection and creates [ValueColumn](DataColumn.md#valuecolumn) for every property. Scope of properties for scanning is defined at compile-time by formal types of objects in `Iterable`, so properties of implementation classes will not be scanned.
151+
Scans object properties using reflection and creates [ValueColumn](DataColumn.md#valuecolumn) for every property.
152+
Scope of properties for scanning is defined at compile-time by formal types of objects in [`Iterable`](https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-iterable/), so properties of implementation classes will not be scanned.
152153

153154
Specify `depth` parameter to perform deep object graph traversal and convert nested objects into [ColumnGroups](DataColumn.md#columngroup) and [FrameColumns](DataColumn.md#framecolumn):
154155

docs/StardustDocs/topics/cumSum.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ Returns a [`DataFrame`](DataFrame.md) or [`DataColumn`](DataColumn.md) containin
1616
**Available for:**
1717
* [`DataFrame`](DataFrame.md)
1818
* [`DataColumn`](DataColumn.md)
19-
* [`GroupBy`](groupBy.md) — cumulative sum per every data group
19+
* [`GroupBy DataFrame`](groupBy.md#transformation) — cumulative sum per every data group
2020

2121
<!---FUN cumSum-->
2222

docs/StardustDocs/topics/duplicate.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,8 @@ Returns [`DataFrame`](DataFrame.md) with original [`DataRow`](DataRow.md) repeat
55
DataRow.duplicate(n): DataFrame
66
```
77

8-
Returns [`FrameColumn`](DataColumn.md#framecolumn) with original [`DataFrame`](DataFrame.md) repeated `n` times. Resulting `FrameColumn` will have an empty [`name`](DataColumn.md#properties).
8+
Returns [`FrameColumn`](DataColumn.md#framecolumn) with original [`DataFrame`](DataFrame.md) repeated `n` times.
9+
Resulting [`FrameColumn`](DataColumn.md#framecolumn) will have an empty [`name`](DataColumn.md#properties).
910
```text
1011
DataFrame.duplicate(n): FrameColumn
1112
```

0 commit comments

Comments
 (0)