|
11 | 11 | * people [Datalore](https://datalore.jetbrains.com/view/notebook/aOTioEClQQrsZZBKeUPAQj)
|
12 | 12 | Small artificial dataset used in [DataFrame API examples](https://kotlin.github.io/dataframe/operations.html)
|
13 | 13 |
|
14 |
| -* puzzles ([Jupyter](jupyter-notebooks/puzzles/40%20puzzles.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/CVp3br3CDXjUGaxxqfJjFF)) – |
| 14 | +* puzzles ([notebook](notebooks/puzzles/40%20puzzles.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/CVp3br3CDXjUGaxxqfJjFF)) – |
15 | 15 | Inspired [by 100 pandas puzzles](https://github.com/ajcr/100-pandas-puzzles). You will go from the simplest tasks to
|
16 | 16 | complex problems where need to think. This notebook will show you how to solve these tasks with the Kotlin
|
17 | 17 | Dataframe in a laconic, beautiful style.
|
18 | 18 | ___
|
19 |
| -* movies ([Jupyter](jupyter-notebooks/movies/movies.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/89IMYb1zbHZxHfwAta6eKP)) – |
| 19 | +* movies ([notebook](notebooks/movies/movies.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/89IMYb1zbHZxHfwAta6eKP)) – |
20 | 20 | In this notebook you can see the basic operations of the Kotlin Dataframe on data from [movielens](https://movielens.org/).
|
21 | 21 | You can take the data from the [link](https://grouplens.org/datasets/movielens/latest/).
|
22 | 22 | ___
|
23 |
| -* netflix ([Jupyter](jupyter-notebooks/netflix/netflix.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/wB6Vq1oKU3GniCi1i05l2X)) – |
| 23 | +* netflix ([notebook](notebooks/netflix/netflix.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/xSJ4rx49hcH71pPnFgZBCq)) – |
24 | 24 | Explore TV shows and movies from Netflix with the powerful Kotlin Dataframe API and beautiful
|
25 | 25 | visualizations from [lets-plot](https://github.com/JetBrains/lets-plot-kotlin).
|
26 | 26 | ___
|
27 |
| -* github ([Jupyter](jupyter-notebooks/github/github.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/wGlYql3ObFCloN0YpWR1Xw)) – |
| 27 | +* github ([notebook](notebooks/github/github.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/wGlYql3ObFCloN0YpWR1Xw)) – |
28 | 28 | This notebook shows the hierarchical dataframes look like and how to work with them.
|
29 | 29 | ___
|
30 |
| -* titanic ([Jupyter](jupyter-notebooks/titanic/Titanic.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/B5YeMMONSAR78FgKQ9yJyW)) – |
| 30 | +* titanic ([notebook](notebooks/titanic/Titanic.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/B5YeMMONSAR78FgKQ9yJyW)) – |
31 | 31 | Let's see how the new library will show itself on the famous Titanic dataset.
|
32 | 32 | ___
|
33 |
| -* wine ([Jupyter](jupyter-notebooks/wine/WineNetWIthKotlinDL.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/aK9vYHH8pCA8H1KbKB5WsI)) – |
| 33 | +* wine ([notebook](notebooks/wine/WineNetWIthKotlinDL.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/aK9vYHH8pCA8H1KbKB5WsI)) – |
34 | 34 | Wine. Kotlin Dataframe. KotlinDL. What came out of this can be seen in this notebook.
|
35 | 35 | ___
|
36 |
| -* youtube ([Jupyter](jupyter-notebooks/youtube/Youtube.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/uXH0VfIM6qrrmwPJnLBi0j)) – |
| 36 | +* youtube ([notebook](notebooks/youtube/Youtube.ipynb)/[Datalore](https://datalore.jetbrains.com/view/notebook/uXH0VfIM6qrrmwPJnLBi0j)) – |
37 | 37 | Explore YouTube videos with YouTube REST API and Kotlin Dataframe
|
0 commit comments