Skip to content

Problem with Preparing the data #33

@caiquanyou

Description

@caiquanyou

In the 02_Exploratory_analysis_of_single_cell_data_with_SAUCIE.ipynb example, i run it and get some error issues below:
'data = pca_op.fit_transform(data_raw)'
TypeError Traceback (most recent call last)
in
1 pca_op = sklearn.decomposition.PCA(100)
----> 2 data = pca_op.fit_transform(data_raw)
3 data

/usr/local/lib/python3.6/dist-packages/sklearn/decomposition/_pca.py in fit_transform(self, X, y)
374 C-ordered array, use 'np.ascontiguousarray'.
375 """
--> 376 U, S, V = self.fit(X)
377 U = U[:, :self.n_components
]
378

/usr/local/lib/python3.6/dist-packages/sklearn/decomposition/_pca.py in _fit(self, X)
396
397 X = self._validate_data(X, dtype=[np.float64, np.float32],
--> 398 ensure_2d=True, copy=self.copy)
399
400 # Handle n_components==None

/usr/local/lib/python3.6/dist-packages/sklearn/base.py in _validate_data(self, X, y, reset, validate_separately, **check_params)
418 f"requires y to be passed, but the target y is None."
419 )
--> 420 X = check_array(X, **check_params)
421 out = X
422 else:

/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs)
70 FutureWarning)
71 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 72 return f(**kwargs)
73 return inner_f
74

/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
576 dtype=dtype, copy=copy,
577 force_all_finite=force_all_finite,
--> 578 accept_large_sparse=accept_large_sparse)
579 else:
580 # If np.array(..) gives ComplexWarning, then we convert the warning

/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy, force_all_finite, accept_large_sparse)
351
352 if accept_sparse is False:
--> 353 raise TypeError('A sparse matrix was passed, but dense '
354 'data is required. Use X.toarray() to '
355 'convert to a dense numpy array.')

TypeError: A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array.
I wonder how to fix this problem?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions