Skip to content

PCA behavior #367

@chasemc

Description

@chasemc

Would it be okay to switch:

if n_components > pca_dimensions and pca_dimensions != 0:
logger.debug(
f"Performing decomposition with PCA (seed {seed}): {n_components} to {pca_dimensions} dims"
)
X = PCA(n_components=pca_dimensions, random_state=random_state).fit_transform(X)
# X = PCA(n_components='mle').fit_transform(X)
n_samples, n_components = X.shape

to adapt to a lower pca dimension when there aren't enough contigs/kmers

    if n_components > pca_dimensions and pca_dimensions != 0:
        if n_samples < pca_dimensions:
            logging.warning(f"n_samples ({n_samples}) is less than pca_dimensions ({pca_dimensions}), lowering pca_dimensions to {min(n_samples, n_components)} .")            
            pca_dimensions = min(n_samples, n_components)
        logger.debug(
            f"Performing decomposition with PCA (seed {seed}): {n_components} to {pca_dimensions} dims"
        )
        X = PCA(n_components=pca_dimensions, random_state=random_state).fit_transform(X)
        n_samples, n_components = X.shape

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions