@@ -3,16 +3,20 @@ in_size = 3
3
3
out_size = 2
4
4
5
5
@testset " Single-Dense" begin
6
- forecaster =
7
- ApplicationDrivenLearning. PredictiveModel (Flux. Dense (in_size => out_size) |> f64)
6
+ forecaster = ApplicationDrivenLearning. PredictiveModel (
7
+ Flux. Dense (in_size => out_size) |> f64,
8
+ )
8
9
x = ones ((in_size, 1 ))
9
10
@test size (forecaster (x)) == (out_size, 1 )
10
11
11
12
θ = ApplicationDrivenLearning. extract_params (forecaster)
12
13
expected_params_size = in_size * out_size + out_size
13
14
@test size (θ) == (expected_params_size,)
14
15
15
- ApplicationDrivenLearning. apply_params (forecaster, ones (expected_params_size))
16
+ ApplicationDrivenLearning. apply_params (
17
+ forecaster,
18
+ ones (expected_params_size),
19
+ )
16
20
x = ones (in_size)
17
21
@test forecaster (x) == (in_size + 1 ) .* ones (out_size)
18
22
@@ -22,7 +26,8 @@ out_size = 2
22
26
ones ((1 , in_size)),
23
27
Flux. Descent (0.1 ),
24
28
)
25
- @test Flux. params (forecaster. networks[1 ])[1 ] == 0.9 * ones ((out_size, in_size))
29
+ @test Flux. params (forecaster. networks[1 ])[1 ] ==
30
+ 0.9 * ones ((out_size, in_size))
26
31
@test Flux. params (forecaster. networks[1 ])[2 ] == 0.9 * ones (out_size)
27
32
end
28
33
37
42
expected_params_size = in_size * out_size + out_size
38
43
@test size (θ) == (expected_params_size,)
39
44
40
- ApplicationDrivenLearning. apply_params (forecaster, ones (expected_params_size))
45
+ ApplicationDrivenLearning. apply_params (
46
+ forecaster,
47
+ ones (expected_params_size),
48
+ )
41
49
x = ones (in_size)
42
50
@test forecaster (x) == (in_size + 1 ) .* ones (out_size)
43
51
47
55
ones ((1 , in_size)),
48
56
Flux. Descent (0.1 ),
49
57
)
50
- @test Flux. params (forecaster. networks[1 ])[1 ] == 0.9 * ones ((out_size, in_size))
58
+ @test Flux. params (forecaster. networks[1 ])[1 ] ==
59
+ 0.9 * ones ((out_size, in_size))
51
60
@test Flux. params (forecaster. networks[1 ])[2 ] == 0.9 * ones (out_size)
52
61
end
53
62
64
73
expected_params_size = model_in_size * model_out_size + model_out_size
65
74
@test size (θ) == (expected_params_size,)
66
75
67
- ApplicationDrivenLearning. apply_params (forecaster, ones (expected_params_size))
76
+ ApplicationDrivenLearning. apply_params (
77
+ forecaster,
78
+ ones (expected_params_size),
79
+ )
68
80
x = ones (in_size)
69
81
@test forecaster (x) == (model_in_size + 1 ) .* ones (out_size)
70
82
85
97
nn1 = Flux. Dense (model_in_size => model_out_size) |> f64
86
98
nn2 = Flux. Dense (model_in_size => model_out_size) |> f64
87
99
in_out_map = [Dict ([1 , 2 ] => [1 ]), Dict ([1 , 3 ] => [2 ])]
88
- forecaster =
89
- ApplicationDrivenLearning. PredictiveModel ([nn1, nn2], in_out_map, in_size, out_size)
100
+ forecaster = ApplicationDrivenLearning. PredictiveModel (
101
+ [nn1, nn2],
102
+ in_out_map,
103
+ in_size,
104
+ out_size,
105
+ )
90
106
91
107
x = ones ((in_size, 1 ))
92
108
@test size (forecaster (x)) == (out_size, 1 )
95
111
expected_params_size = 2 * (model_in_size * model_out_size + model_out_size)
96
112
@test size (θ) == (expected_params_size,)
97
113
98
- ApplicationDrivenLearning. apply_params (forecaster, ones (expected_params_size))
114
+ ApplicationDrivenLearning. apply_params (
115
+ forecaster,
116
+ ones (expected_params_size),
117
+ )
99
118
x = ones (in_size)
100
119
@test forecaster (x) == (model_in_size + 1 ) .* ones (out_size)
101
120
0 commit comments