|
| 1 | +# basic model for testing gradient mode |
| 2 | +X = Float32.(ones(1, 1)) |
| 3 | +Y = Float32.(ones(1, 1)) |
| 4 | +model = ApplicationDrivenLearning.Model() |
| 5 | +@variables(model, begin |
| 6 | + x >= 0, ApplicationDrivenLearning.Policy |
| 7 | + d, ApplicationDrivenLearning.Forecast |
| 8 | +end) |
| 9 | +@objective(ApplicationDrivenLearning.Plan(model), Min, x.plan) |
| 10 | +@objective(ApplicationDrivenLearning.Assess(model), Min, x.assess) |
| 11 | +set_optimizer(model, HiGHS.Optimizer) |
| 12 | +set_silent(model) |
| 13 | +ApplicationDrivenLearning.set_forecast_model(model, Chain(Dense(1 => 1))) |
| 14 | + |
| 15 | +@testset "GradientMode Stop Rules" begin |
| 16 | + # epochs |
| 17 | + initial_sol = ApplicationDrivenLearning.extract_params(model.forecast) |
| 18 | + opt = ApplicationDrivenLearning.Options( |
| 19 | + ApplicationDrivenLearning.GradientMode, |
| 20 | + epochs = 0, |
| 21 | + ) |
| 22 | + sol = ApplicationDrivenLearning.train!(model, X, Y, opt) |
| 23 | + @test initial_sol == sol.params |
| 24 | + |
| 25 | + # time_limit |
| 26 | + opt = ApplicationDrivenLearning.Options( |
| 27 | + ApplicationDrivenLearning.GradientMode, |
| 28 | + time_limit = 0, |
| 29 | + ) |
| 30 | + sol = ApplicationDrivenLearning.train!(model, X, Y, opt) |
| 31 | + @test initial_sol == sol.params |
| 32 | + |
| 33 | + # gradient norm |
| 34 | + initial_sol = ApplicationDrivenLearning.extract_params(model.forecast) |
| 35 | + opt = ApplicationDrivenLearning.Options( |
| 36 | + ApplicationDrivenLearning.GradientMode, |
| 37 | + g_tol = Inf, |
| 38 | + ) |
| 39 | + sol = ApplicationDrivenLearning.train!(model, X, Y, opt) |
| 40 | + @test initial_sol == sol.params |
| 41 | +end |
0 commit comments