Skip to content

Commit e1273f7

Browse files
changed the name to GAS (#60)
1 parent 38f60da commit e1273f7

36 files changed

+239
-351
lines changed

Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
name = "ScoreDrivenModels"
1+
name = "GAS"
22
uuid = "4a87933e-d659-11e9-0e65-7f40dedd4a3a"
33
authors = ["guilhermebodin <[email protected]>"]
44
version = "0.1.0"

README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,16 @@
1-
# ScoreDrivenModels.jl
1+
# GAS.jl
22

33
| **Build Status** | **Coverage** | **Documentation** |
44
|:-----------------:|:-----------------:|:-----------------:|
5-
| [![Build Status][build-img]][build-url] | [![Codecov branch][codecov-img]][codecov-url] |[![](https://img.shields.io/badge/docs-latest-blue.svg)](https://lampspuc.github.io/ScoreDrivenModels.jl/latest/)
5+
| [![Build Status][build-img]][build-url] | [![Codecov branch][codecov-img]][codecov-url] |[![](https://img.shields.io/badge/docs-latest-blue.svg)](https://lampspuc.github.io/GAS.jl/latest/)
66

7-
[build-img]: https://travis-ci.org/LAMPSPUC/ScoreDrivenModels.jl.svg?branch=master
8-
[build-url]: https://travis-ci.org/LAMPSPUC/ScoreDrivenModels.jl
7+
[build-img]: https://travis-ci.org/LAMPSPUC/GAS.jl.svg?branch=master
8+
[build-url]: https://travis-ci.org/LAMPSPUC/GAS.jl
99

10-
[codecov-img]: https://codecov.io/gh/LAMPSPUC/ScoreDrivenModels.jl/coverage.svg?branch=master
11-
[codecov-url]: https://codecov.io/gh/LAMPSPUC/ScoreDrivenModels.jl?branch=master
10+
[codecov-img]: https://codecov.io/gh/LAMPSPUC/GAS.jl/coverage.svg?branch=master
11+
[codecov-url]: https://codecov.io/gh/LAMPSPUC/GAS.jl?branch=master
1212

13-
ScoreDrivenModels.jl is a Julia package for modeling, forecasting and simulating time series with score-driven models, also known as dynamic conditional score models (DCS) or generalized autoregressive score models (GAS). Implementations are based on the paper [Generalized Autoregressive Models with Applications](http://dx.doi.org/10.1002/jae.1279) by D. Creal, S. J. Koopman and A. Lucas.
13+
GAS.jl is a Julia package for modeling, forecasting and simulating time series with score-driven models, also known as dynamic conditional score models (DCS) or generalized autoregressive score models (GAS). Implementations are based on the paper [Generalized Autoregressive Models with Applications](http://dx.doi.org/10.1002/jae.1279) by D. Creal, S. J. Koopman and A. Lucas.
1414

1515
# Features
1616
* Autoregressive structure

bench/benchmark_estimate.jl

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
using ScoreDrivenModels, Distributions, BenchmarkTools, Random, Test
1+
using GAS, Distributions, BenchmarkTools, Random, Test
22

33
include("test/utils.jl")
44

@@ -7,7 +7,7 @@ scaling = 0.0
77
A = [0.2 0; 0 0.2]
88
B = [0.2 0; 0 0.2]
99
simulation = simulate_GAS_1_1(Beta, scaling, ω, A, B, 1)
10-
gas = GAS(1, 1, Beta, scaling)
10+
gas = GAS.Model(1, 1, Beta, scaling)
1111
gas.ω = ω
1212
gas.A[1] = A
1313
gas.B[1] = B
@@ -34,8 +34,8 @@ p = 1
3434
q = 1
3535
num_seeds = 3
3636
@benchmark begin
37-
gas = GAS($p, $q, $Beta, $scaling)
38-
opt_method = ScoreDrivenModels.LBFGS(gas, $num_seeds)
37+
gas = GAS.Model($p, $q, $Beta, $scaling)
38+
opt_method = GAS.LBFGS(gas, $num_seeds)
3939
fit!(gas, $simulation; verbose = $verbose, opt_method = opt_method)
4040
end
4141
# BenchmarkTools.Trial:
@@ -60,8 +60,8 @@ p = 1
6060
q = 1
6161
num_seeds = 3
6262
@benchmark begin
63-
gas = GAS($p, $q, $LogNormal, $scaling)
64-
opt_method = ScoreDrivenModels.LBFGS(gas, $num_seeds)
63+
gas = GAS.Model($p, $q, $LogNormal, $scaling)
64+
opt_method = GAS.LBFGS(gas, $num_seeds)
6565
fit!(gas, $simulation; verbose = $verbose, opt_method = opt_method)
6666
end
6767
# BenchmarkTools.Trial:
@@ -79,8 +79,8 @@ end
7979

8080
scaling = 0.5
8181
@benchmark begin
82-
gas = GAS($p, $q, $LogNormal, $scaling)
83-
opt_method = ScoreDrivenModels.LBFGS(gas, $num_seeds)
82+
gas = GAS.Model($p, $q, $LogNormal, $scaling)
83+
opt_method = GAS.LBFGS(gas, $num_seeds)
8484
fit!(gas, $simulation; verbose = $verbose, opt_method = opt_method)
8585
end
8686
# BenchmarkTools.Trial:
@@ -97,8 +97,8 @@ end
9797

9898
scaling = 1.0
9999
@benchmark begin
100-
gas = GAS($p, $q, $LogNormal, $scaling)
101-
opt_method = ScoreDrivenModels.LBFGS(gas, $num_seeds)
100+
gas = GAS.Model($p, $q, $LogNormal, $scaling)
101+
opt_method = GAS.LBFGS(gas, $num_seeds)
102102
fit!(gas, $simulation; verbose = $verbose, opt_method = opt_method)
103103
end
104104
# BenchmarkTools.Trial:

docs/make.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
1-
using Documenter, ScoreDrivenModels
1+
using Documenter, GAS
22

33
makedocs(
4-
modules = [ScoreDrivenModels],
4+
modules = [GAS],
55
doctest = false,
66
clean = true,
77
format = Documenter.HTML(mathengine = Documenter.MathJax()),
8-
sitename = "ScoreDrivenModels.jl",
8+
sitename = "GAS.jl",
99
authors = "Guilherme Bodin and Raphael Saavedra",
1010
pages = [
1111
"Home" => "index.md",
@@ -15,5 +15,5 @@ makedocs(
1515
)
1616

1717
deploydocs(
18-
repo = "github.com/LAMPSPUC/ScoreDrivenModels.jl.git",
18+
repo = "github.com/LAMPSPUC/GAS.jl.git",
1919
)

docs/src/examples.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ y = Vector{Float64}(vec(inflow'))
1010

1111
# Specify GAS model: here we use lag 1 for trend characterization and
1212
# lag 12 for seasonality characterization
13-
gas = GAS([1, 12], [1, 12], LogNormal, 0.0)
13+
gas = GAS.Model([1, 12], [1, 12], LogNormal, 0.0)
1414

1515
# Estimate the model via MLE
1616
fit!(gas, y)

docs/src/index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
1-
# ScoreDrivenModels.jl Documentation
1+
# GAS.jl Documentation
22

3-
ScoreDrivenModels.jl is a Julia package for modeling, forecasting and simulating time series with score-driven models, also known as dynamic conditional score models (DCS) or generalized autoregressive score models (GAS). Implementations are based on the paper [Generalized Autoregressive Models with Applications](http://dx.doi.org/10.1002/jae.1279) by D. Creal, S. J. Koopman and A. Lucas.
3+
GAS.jl is a Julia package for modeling, forecasting and simulating time series with or generalized autoregressive score models (GAS) models, also known as dynamic conditional score models (DCS). Implementations are based on the paper [Generalized Autoregressive Models with Applications](http://dx.doi.org/10.1002/jae.1279) by D. Creal, S. J. Koopman and A. Lucas.
44

55
# Features
66
* SARIMA structure

docs/src/manual.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -25,16 +25,16 @@ Notice that the change in parametrization changes the dynamics of the model. The
2525
The abstract type `Link` subsumes any type of link that can be expressed.
2626

2727
```@docs
28-
ScoreDrivenModels.IdentityLink
29-
ScoreDrivenModels.LogLink
30-
ScoreDrivenModels.LogitLink
28+
GAS.IdentityLink
29+
GAS.LogLink
30+
GAS.LogitLink
3131
```
3232

3333
### Link functions
3434

3535
```@docs
36-
ScoreDrivenModels.link
37-
ScoreDrivenModels.unlink
38-
ScoreDrivenModels.jacobian_link
36+
GAS.link
37+
GAS.unlink
38+
GAS.jacobian_link
3939
```
4040

examples/Extras/README.md

Lines changed: 0 additions & 1 deletion
This file was deleted.

examples/Extras/useful_plots.jl

Lines changed: 0 additions & 85 deletions
This file was deleted.

examples/GAS(1, 1)/beta.jl

Whitespace-only changes.

0 commit comments

Comments
 (0)