Skip to content

Commit 0b5e4c8

Browse files
author
andre_ramos
committed
fix png refs
1 parent 782933d commit 0b5e4c8

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

docs/src/manual.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ prediction = exp.(prediction_log)
6868
plot(airp.passengers, w=2 , color = "Black", lab = "Historical", legend = :outerbottom)
6969
plot!(vcat(ones(length(log_air_passengers)).*NaN, prediction), lab = "Forecast", w=2, color = "blue")
7070
```
71-
![quick_example_airp](./docs/src/assets/quick_example_airp.PNG)
71+
![quick_example_airp](assets/quick_example_airp.PNG)
7272

7373
```julia
7474
N_scenarios = 1000
@@ -81,7 +81,7 @@ end
8181
plot!(vcat(ones(length(log_air_passengers)).*NaN, exp.(simulation[:, N_scenarios])), lab = "Scenarios Paths", α = 0.1 , color = "red")
8282

8383
```
84-
![airp_sim](./docs/src/assets/airp_sim.svg)
84+
![airp_sim](assets/airp_sim.svg)
8585

8686
### Component Extraction
8787
Quick example on how to perform component extraction in time series utilizing StateSpaceLearning.
@@ -107,7 +107,7 @@ plot(seasonal, w=2 , color = "Black", lab = "Seasonal Component", legend = :oute
107107

108108
```
109109

110-
| ![quick_example_trend](./docs/src/assets/trend.svg) | ![quick_example_seas](./docs/src/assets/seasonal.svg)|
110+
| ![quick_example_trend](assets/trend.svg) | ![quick_example_seas](assets/seasonal.svg)|
111111
|:------------------------------:|:-----------------------------:|
112112

113113

@@ -164,7 +164,7 @@ plot!(real_removed_valued, lab = "Real Removed Values", w=2, color = "red")
164164
plot!(fitted_completed_missing_values, lab = "Fit in Sample completed values", w=2, color = "blue")
165165

166166
```
167-
![quick_example_completion_airp](./docs/src/assets/quick_example_completion_airp.PNG)
167+
![quick_example_completion_airp](assets/quick_example_completion_airp.PNG)
168168

169169
### Outlier Detection
170170
Quick example of outlier detection for an altered air passengers time-series (artificial NaN values are added to the original time-series).
@@ -190,7 +190,7 @@ plot(log_air_passengers, w=2 , color = "Black", lab = "Historical", legend = :ou
190190
scatter!([detected_outliers], log_air_passengers[detected_outliers], lab = "Detected Outliers")
191191

192192
```
193-
![quick_example_completion_airp](./docs/src/assets/outlier.svg)
193+
![quick_example_completion_airp](assets/outlier.svg)
194194

195195
### StateSpaceModels initialization
196196
Quick example on how to use StateSpaceLearning to initialize StateSpaceModels

0 commit comments

Comments
 (0)