@@ -71,7 +71,7 @@ prediction = exp.(prediction_log)
71
71
plot (airp. passengers, w= 2 , color = " Black" , lab = " Historical" , legend = :outerbottom )
72
72
plot! (vcat (ones (length (log_air_passengers)).* NaN , prediction), lab = " Forecast" , w= 2 , color = " blue" )
73
73
```
74
- ![ quick_example_airp] ( ./docs/assets/quick_example_airp.PNG )
74
+ ![ quick_example_airp] ( ./docs/src/ assets/quick_example_airp.PNG )
75
75
76
76
``` julia
77
77
N_scenarios = 1000
84
84
plot! (vcat (ones (length (log_air_passengers)).* NaN , exp .(simulation[:, N_scenarios])), lab = " Scenarios Paths" , α = 0.1 , color = " red" )
85
85
86
86
```
87
- ![ airp_sim] ( ./docs/assets/airp_sim.svg )
87
+ ![ airp_sim] ( ./docs/src/ assets/airp_sim.svg )
88
88
89
89
### Component Extraction
90
90
Quick example on how to perform component extraction in time series utilizing StateSpaceLearning.
@@ -109,7 +109,7 @@ plot(seasonal, w=2 , color = "Black", lab = "Seasonal Component", legend = :oute
109
109
110
110
```
111
111
112
- | ![ quick_example_trend] ( ./docs/assets/trend.svg ) | ![ quick_example_seas] ( ./docs/assets/seasonal.svg ) |
112
+ | ![ quick_example_trend] ( ./docs/src/ assets/trend.svg ) | ![ quick_example_seas] ( ./docs/src /assets/seasonal.svg ) |
113
113
| :------------------------------:| :-----------------------------:|
114
114
115
115
@@ -164,7 +164,7 @@ plot!(real_removed_valued, lab = "Real Removed Values", w=2, color = "red")
164
164
plot! (fitted_completed_missing_values, lab = " Fit in Sample completed values" , w= 2 , color = " blue" )
165
165
166
166
```
167
- ![ quick_example_completion_airp] ( ./docs/assets/quick_example_completion_airp.PNG )
167
+ ![ quick_example_completion_airp] ( ./docs/src/ assets/quick_example_completion_airp.PNG )
168
168
169
169
### Outlier Detection
170
170
Quick example of outlier detection for an altered air passengers time-series (artificial NaN values are added to the original time-series).
@@ -188,7 +188,7 @@ plot(log_air_passengers, w=2 , color = "Black", lab = "Historical", legend = :ou
188
188
scatter! ([detected_outliers], log_air_passengers[detected_outliers], lab = " Detected Outliers" )
189
189
190
190
```
191
- ![ quick_example_completion_airp] ( ./docs/assets/outlier.svg )
191
+ ![ quick_example_completion_airp] ( ./docs/src/ assets/outlier.svg )
192
192
193
193
### StateSpaceModels initialization
194
194
Quick example on how to use StateSpaceLearning to initialize StateSpaceModels
0 commit comments