Skip to content

Commit ae82d55

Browse files
committed
fix docs
1 parent a8e4e5d commit ae82d55

File tree

11 files changed

+15
-17
lines changed

11 files changed

+15
-17
lines changed

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@ prediction = exp.(prediction_log)
7171
plot(airp.passengers, w=2 , color = "Black", lab = "Historical", legend = :outerbottom)
7272
plot!(vcat(ones(length(log_air_passengers)).*NaN, prediction), lab = "Forecast", w=2, color = "blue")
7373
```
74-
![quick_example_airp](./docs/assets/quick_example_airp.PNG)
74+
![quick_example_airp](./docs/src/assets/quick_example_airp.PNG)
7575

7676
```julia
7777
N_scenarios = 1000
@@ -84,7 +84,7 @@ end
8484
plot!(vcat(ones(length(log_air_passengers)).*NaN, exp.(simulation[:, N_scenarios])), lab = "Scenarios Paths", α = 0.1 , color = "red")
8585

8686
```
87-
![airp_sim](./docs/assets/airp_sim.svg)
87+
![airp_sim](./docs/src/assets/airp_sim.svg)
8888

8989
### Component Extraction
9090
Quick example on how to perform component extraction in time series utilizing StateSpaceLearning.
@@ -109,7 +109,7 @@ plot(seasonal, w=2 , color = "Black", lab = "Seasonal Component", legend = :oute
109109

110110
```
111111

112-
| ![quick_example_trend](./docs/assets/trend.svg) | ![quick_example_seas](./docs/assets/seasonal.svg)|
112+
| ![quick_example_trend](./docs/src/assets/trend.svg) | ![quick_example_seas](./docs/src/assets/seasonal.svg)|
113113
|:------------------------------:|:-----------------------------:|
114114

115115

@@ -164,7 +164,7 @@ plot!(real_removed_valued, lab = "Real Removed Values", w=2, color = "red")
164164
plot!(fitted_completed_missing_values, lab = "Fit in Sample completed values", w=2, color = "blue")
165165

166166
```
167-
![quick_example_completion_airp](./docs/assets/quick_example_completion_airp.PNG)
167+
![quick_example_completion_airp](./docs/src/assets/quick_example_completion_airp.PNG)
168168

169169
### Outlier Detection
170170
Quick example of outlier detection for an altered air passengers time-series (artificial NaN values are added to the original time-series).
@@ -188,7 +188,7 @@ plot(log_air_passengers, w=2 , color = "Black", lab = "Historical", legend = :ou
188188
scatter!([detected_outliers], log_air_passengers[detected_outliers], lab = "Detected Outliers")
189189

190190
```
191-
![quick_example_completion_airp](./docs/assets/outlier.svg)
191+
![quick_example_completion_airp](./docs/src/assets/outlier.svg)
192192

193193
### StateSpaceModels initialization
194194
Quick example on how to use StateSpaceLearning to initialize StateSpaceModels

docs/Project.toml

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,2 @@
11
[deps]
2-
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
3-
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
42
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
5-
GR = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71"
6-
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"

docs/make.jl

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
using Documenter
2-
using StateSpaceLearning
2+
#using StateSpaceLearning
3+
include("../src/StateSpaceLearning.jl")
34

45
# Set up to run docstrings with jldoctest
56
DocMeta.setdocmeta!(
@@ -10,12 +11,13 @@ makedocs(;
1011
modules=[StateSpaceLearning],
1112
doctest=true,
1213
clean=true,
14+
checkdocs=:none,
1315
format=Documenter.HTML(mathengine=Documenter.MathJax2()),
1416
sitename="StateSpaceLearning.jl",
1517
authors="André Ramos",
1618
pages=[
1719
"Home" => "index.md",
18-
"manual.md", "adapting_package.md"
20+
"adapting_package.md"
1921
],
2022
)
2123

File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

docs/src/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ StateSpaceLearning.jl is a package for modeling and forecasting time series in a
1616

1717
This package is registered so you can simply `add` it using Julia's `Pkg` manager:
1818
```julia
19-
pkg> add StateSpaceLearning
19+
pkg.add("StateSpaceLearning")
2020
```
2121

2222
## Citing StateSpaceLearning.jl

0 commit comments

Comments
 (0)