3
3
model::StateSpaceModel;
4
4
filter::KalmanFilter=default_filter(model),
5
5
optimizer::Optimizer=Optimizer(Optim.LBFGS()),
6
- save_hyperparameter_distribution_results ::Bool=true
6
+ save_hyperparameter_distribution ::Bool=true
7
7
)
8
8
9
9
Estimate the state-space model parameters via maximum likelihood. The resulting optimal
@@ -30,7 +30,7 @@ function fit!(
30
30
model:: StateSpaceModel ;
31
31
filter:: KalmanFilter = default_filter (model),
32
32
optimizer:: Optimizer = default_optimizer (model),
33
- save_hyperparameter_distribution_results :: Bool = true
33
+ save_hyperparameter_distribution :: Bool = true
34
34
)
35
35
isfitted (model) && return model
36
36
@assert has_fit_methods (typeof (model))
@@ -48,7 +48,7 @@ function fit!(
48
48
opt_hyperparameters = opt. minimizer
49
49
update_model_hyperparameters! (model, opt_hyperparameters)
50
50
51
- if save_hyperparameter_distribution_results
51
+ if save_hyperparameter_distribution
52
52
numerical_hessian = Optim. hessian! (func, opt_hyperparameters)
53
53
try
54
54
std_err = numerical_hessian |> pinv |> diag .| > sqrt
@@ -61,7 +61,7 @@ function fit!(
61
61
" change the optimization algorithm by using the kwarg fit(...; optimizer = " *
62
62
" Optimizer(StateSpaceModels.Optim.THE_METHOD_OF_YOUR_CHOICE()))" *
63
63
" The list of possible algorithms can be found on this link https://julianlsolvers.github.io/Optim.jl/stable/#" *
64
- " Otherwise you can simply skip this proccess by using fit(...; save_hyperparameter_distribution_results =false) "
64
+ " Otherwise you can simply skip this proccess by using fit(...; save_hyperparameter_distribution =false) "
65
65
)
66
66
std_err = fill (NaN , number_hyperparameters (model))
67
67
fill_results! (model, opt_loglikelihood, std_err)
0 commit comments