|
| 1 | +""" |
| 2 | +Automatically creates/deletes Glue Catalog tables when CSV files are uploaded/deleted in S3. |
| 3 | +
|
| 4 | +Note: all column types of the created tables are defined as strings and please be aware when using them downstream. |
| 5 | +""" |
| 6 | + |
| 7 | +import json |
| 8 | +import logging |
| 9 | +import re |
| 10 | +import unicodedata |
| 11 | +from os import getenv |
| 12 | +from pathlib import PurePosixPath |
| 13 | +from typing import Any |
| 14 | +from urllib.parse import unquote_plus |
| 15 | + |
| 16 | +import awswrangler as wr |
| 17 | + |
| 18 | +logger = logging.getLogger() |
| 19 | +logger.setLevel(logging.INFO) |
| 20 | + |
| 21 | + |
| 22 | +def parse_s3_key(s3_key: str) -> tuple[str, str, str]: |
| 23 | + """Parse S3 key to extract department, user_name, and file_name. |
| 24 | +
|
| 25 | + Expected format: <department>/<user_name>/<file.csv> |
| 26 | + Example: parking/davina/test_1.csv |
| 27 | +
|
| 28 | + Args: |
| 29 | + s3_key: URL-encoded S3 object key |
| 30 | +
|
| 31 | + Returns: |
| 32 | + Tuple of (department, user_name, file_base_name) |
| 33 | + """ |
| 34 | + decoded_key = unquote_plus(s3_key) |
| 35 | + path = PurePosixPath(decoded_key) |
| 36 | + |
| 37 | + if len(path.parts) < 3: |
| 38 | + raise ValueError( |
| 39 | + f"Invalid S3 key format: {s3_key}. Expected format: <department>/<user_name>/<file.csv>" |
| 40 | + ) |
| 41 | + |
| 42 | + if path.suffix != ".csv": |
| 43 | + raise ValueError(f"File must be a CSV file: {path.name}") |
| 44 | + |
| 45 | + department = path.parts[0] |
| 46 | + user_name = path.parts[1] |
| 47 | + file_base_name = path.stem |
| 48 | + |
| 49 | + return department, user_name, file_base_name |
| 50 | + |
| 51 | + |
| 52 | +def normalize_name(name: str, lowercase: bool = True) -> str: |
| 53 | + """Normalize name by replacing all non-alphanumeric characters with underscores. |
| 54 | +
|
| 55 | + Strips accents, and converts to lowercase (optional). Consecutive non-alphanumeric |
| 56 | + characters are replaced with a single underscore. |
| 57 | +
|
| 58 | + Args: |
| 59 | + name: Original name (column name, file name, user name, etc.) |
| 60 | + lowercase: Whether to convert to lowercase (default: True) |
| 61 | +
|
| 62 | + Returns: |
| 63 | + Normalized name |
| 64 | + """ |
| 65 | + formatted_name = name.lower() if lowercase else name |
| 66 | + formatted_name = unicodedata.normalize("NFKD", formatted_name) |
| 67 | + formatted_name = re.sub(r"[^a-zA-Z0-9]+", "_", formatted_name) |
| 68 | + formatted_name = formatted_name.strip("_") |
| 69 | + return formatted_name |
| 70 | + |
| 71 | + |
| 72 | +def deduplicate_column_names(columns: list[str]) -> list[str]: |
| 73 | + """Deduplicate column names by appending a counter to duplicate names. |
| 74 | +
|
| 75 | + Args: |
| 76 | + columns: List of column names (may contain duplicates) |
| 77 | +
|
| 78 | + Returns: |
| 79 | + List of deduplicated column names |
| 80 | + """ |
| 81 | + deduped_headers = [] |
| 82 | + header_counts = {} |
| 83 | + |
| 84 | + for col in columns: |
| 85 | + if col in header_counts: |
| 86 | + header_counts[col] += 1 |
| 87 | + deduped_headers.append(f"{col}_{header_counts[col]}") |
| 88 | + else: |
| 89 | + header_counts[col] = 0 |
| 90 | + deduped_headers.append(col) |
| 91 | + |
| 92 | + return deduped_headers |
| 93 | + |
| 94 | + |
| 95 | +def extract_csv_column_definitions(bucket: str, key: str) -> dict[str, str]: |
| 96 | + """Extract column names from CSV header, normalize and deduplicate them. |
| 97 | +
|
| 98 | + Returns dictionary mapping column names to types (all string type). |
| 99 | +
|
| 100 | + Args: |
| 101 | + bucket: S3 bucket name |
| 102 | + key: S3 object key (file path) |
| 103 | +
|
| 104 | + Returns: |
| 105 | + Dictionary mapping column names to types (all 'string') |
| 106 | +
|
| 107 | + Raises: |
| 108 | + ValueError: If CSV file has no header row or empty header row |
| 109 | + """ |
| 110 | + s3_path = f"s3://{bucket}/{key}" |
| 111 | + |
| 112 | + try: |
| 113 | + df = wr.s3.read_csv( |
| 114 | + path=s3_path, |
| 115 | + nrows=1, |
| 116 | + use_threads=False, |
| 117 | + encoding="utf-8-sig", |
| 118 | + on_bad_lines="skip", |
| 119 | + ) |
| 120 | + except Exception as e: |
| 121 | + logger.error(f"Failed to read CSV from S3: {e}") |
| 122 | + raise ValueError(f"Unable to read CSV file: {e}") from e |
| 123 | + |
| 124 | + if len(df.columns) == 0: |
| 125 | + raise ValueError("CSV file has no header row") |
| 126 | + |
| 127 | + column_names = list(df.columns) |
| 128 | + |
| 129 | + if not column_names or all(not col or col.strip() == "" for col in column_names): |
| 130 | + raise ValueError("CSV file has empty or invalid header row") |
| 131 | + |
| 132 | + normalized_headers = [normalize_name(col) for col in column_names] |
| 133 | + deduped_headers = deduplicate_column_names(normalized_headers) |
| 134 | + |
| 135 | + columns_types = {} |
| 136 | + for col_name in deduped_headers: |
| 137 | + if not col_name: |
| 138 | + col_name = f"column_{len(columns_types)}" |
| 139 | + columns_types[col_name] = "string" |
| 140 | + |
| 141 | + logger.info( |
| 142 | + f"A total of {len(columns_types)} column definitions were extracted from CSV header" |
| 143 | + ) |
| 144 | + return columns_types |
| 145 | + |
| 146 | + |
| 147 | +def create_glue_table( |
| 148 | + database_name: str, |
| 149 | + table_name: str, |
| 150 | + bucket: str, |
| 151 | + s3_key: str, |
| 152 | + columns_types: dict[str, str], |
| 153 | +): |
| 154 | + """Create or recreate Glue Catalog table using AWS Data Wrangler. |
| 155 | +
|
| 156 | + Args: |
| 157 | + database_name: Glue database name |
| 158 | + table_name: Glue table name |
| 159 | + bucket: S3 bucket name |
| 160 | + s3_key: S3 object key (file path) |
| 161 | + columns_types: Dictionary mapping column names to types |
| 162 | + """ |
| 163 | + # Extract directory path: s3://bucket/parking/user/file.csv -> s3://bucket/parking/user/ |
| 164 | + s3_path_parts = s3_key.rsplit("/", 1) |
| 165 | + s3_directory = f"{s3_path_parts[0]}/" if len(s3_path_parts) > 1 else "" |
| 166 | + s3_location = f"s3://{bucket}/{s3_directory}" |
| 167 | + |
| 168 | + wr.catalog.create_csv_table( |
| 169 | + database=database_name, |
| 170 | + table=table_name, |
| 171 | + path=s3_location, |
| 172 | + columns_types=columns_types, |
| 173 | + mode="overwrite", |
| 174 | + skip_header_line_count=1, |
| 175 | + ) |
| 176 | + logger.info( |
| 177 | + f"Successfully created table: {table_name} in database: {database_name}" |
| 178 | + ) |
| 179 | + |
| 180 | + |
| 181 | +def delete_glue_table(database_name: str, table_name: str): |
| 182 | + """Delete Glue Catalog table using AWS Data Wrangler. |
| 183 | +
|
| 184 | + Args: |
| 185 | + database_name: Glue database name |
| 186 | + table_name: Glue table name |
| 187 | + """ |
| 188 | + wr.catalog.delete_table_if_exists(database=database_name, table=table_name) |
| 189 | + logger.info( |
| 190 | + f"Successfully deleted table: {table_name} from database: {database_name}" |
| 191 | + ) |
| 192 | + |
| 193 | + |
| 194 | +def process_single_event_record( |
| 195 | + record: dict[str, Any], database_name: str |
| 196 | +) -> tuple[bool, bool]: |
| 197 | + """Process a single S3 event record. |
| 198 | +
|
| 199 | + Args: |
| 200 | + record: S3 event record dictionary |
| 201 | + database_name: Glue database name |
| 202 | +
|
| 203 | + Returns: |
| 204 | + Tuple of (was_processed, was_skipped) |
| 205 | +
|
| 206 | + Raises: |
| 207 | + Exception: If processing fails |
| 208 | + """ |
| 209 | + event_name = record.get("eventName", "") |
| 210 | + s3_info = record.get("s3", {}) |
| 211 | + bucket = s3_info.get("bucket", {}).get("name", "") |
| 212 | + s3_key = s3_info.get("object", {}).get("key", "") |
| 213 | + |
| 214 | + if not s3_key: |
| 215 | + logger.warning("No S3 key found in event record") |
| 216 | + return False, True |
| 217 | + |
| 218 | + decoded_s3_key = unquote_plus(s3_key) |
| 219 | + logger.info(f"Processing event: {event_name} for s3://{bucket}/{decoded_s3_key}") |
| 220 | + |
| 221 | + _, user_name, file_base_name = parse_s3_key(s3_key) |
| 222 | + table_name = f"{normalize_name(user_name)}_{normalize_name(file_base_name)}" |
| 223 | + |
| 224 | + if event_name.startswith("ObjectCreated"): |
| 225 | + logger.info(f"Creating/updating table: {table_name}") |
| 226 | + |
| 227 | + columns_types = extract_csv_column_definitions(bucket, decoded_s3_key) |
| 228 | + |
| 229 | + create_glue_table( |
| 230 | + database_name=database_name, |
| 231 | + table_name=table_name, |
| 232 | + bucket=bucket, |
| 233 | + s3_key=decoded_s3_key, |
| 234 | + columns_types=columns_types, |
| 235 | + ) |
| 236 | + |
| 237 | + logger.info( |
| 238 | + f"Successfully processed upload: {decoded_s3_key} -> table: {table_name}" |
| 239 | + ) |
| 240 | + return True, False |
| 241 | + |
| 242 | + elif event_name.startswith("ObjectRemoved"): |
| 243 | + logger.info(f"Deleting table: {table_name}") |
| 244 | + |
| 245 | + delete_glue_table(database_name=database_name, table_name=table_name) |
| 246 | + |
| 247 | + logger.info( |
| 248 | + f"Successfully processed deletion: {decoded_s3_key} -> deleted table: {table_name}" |
| 249 | + ) |
| 250 | + return True, False |
| 251 | + |
| 252 | + else: |
| 253 | + logger.warning(f"Unsupported event type: {event_name}") |
| 254 | + return False, True |
| 255 | + |
| 256 | + |
| 257 | +def extract_s3_event_from_sqs_record(sqs_record: dict[str, Any]) -> dict[str, Any]: |
| 258 | + """Extract S3 event from SQS message body. |
| 259 | +
|
| 260 | + Args: |
| 261 | + sqs_record: SQS record containing S3 event in body |
| 262 | +
|
| 263 | + Returns: |
| 264 | + S3 event record dictionary |
| 265 | + """ |
| 266 | + body = sqs_record.get("body", "{}") |
| 267 | + s3_event = json.loads(body) |
| 268 | + |
| 269 | + if "Records" in s3_event and len(s3_event["Records"]) > 0: |
| 270 | + return s3_event["Records"][0] |
| 271 | + |
| 272 | + return {} |
| 273 | + |
| 274 | + |
| 275 | +def handle_sqs_event(event: dict[str, Any]) -> dict[str, Any]: |
| 276 | + """Handle SQS event containing S3 event notifications. |
| 277 | +
|
| 278 | + Process each SQS message, extract S3 events, and handle partial batch failures. |
| 279 | +
|
| 280 | + Args: |
| 281 | + event: SQS event dictionary containing Records array of SQS messages |
| 282 | +
|
| 283 | + Returns: |
| 284 | + Dictionary with batchItemFailures for partial batch failure handling |
| 285 | + """ |
| 286 | + database_name = getenv("GLUE_DATABASE_NAME", "parking_user_uploads_db") |
| 287 | + sqs_records = event.get("Records", []) |
| 288 | + total_records = len(sqs_records) |
| 289 | + processed_count = 0 |
| 290 | + skipped_count = 0 |
| 291 | + failed_message_ids = [] |
| 292 | + |
| 293 | + logger.info(f"Processing {total_records} SQS message(s)") |
| 294 | + |
| 295 | + for sqs_record in sqs_records: |
| 296 | + message_id = sqs_record.get("messageId", "unknown") |
| 297 | + logger.info(f"Processing SQS message {message_id}") |
| 298 | + |
| 299 | + try: |
| 300 | + s3_event_record = extract_s3_event_from_sqs_record(sqs_record) |
| 301 | + |
| 302 | + if not s3_event_record: |
| 303 | + logger.warning(f"No S3 event found in SQS message {message_id}") |
| 304 | + skipped_count += 1 |
| 305 | + continue |
| 306 | + |
| 307 | + s3_key = ( |
| 308 | + s3_event_record.get("s3", {}).get("object", {}).get("key", "unknown") |
| 309 | + ) |
| 310 | + logger.info(f"Processing file from message {message_id}: {s3_key}") |
| 311 | + |
| 312 | + was_processed, was_skipped = process_single_event_record( |
| 313 | + s3_event_record, database_name |
| 314 | + ) |
| 315 | + |
| 316 | + if was_processed: |
| 317 | + processed_count += 1 |
| 318 | + logger.info(f"Successfully processed message {message_id}") |
| 319 | + elif was_skipped: |
| 320 | + skipped_count += 1 |
| 321 | + logger.info(f"Skipped message {message_id}") |
| 322 | + |
| 323 | + except Exception as e: |
| 324 | + error_msg = f"Error processing SQS message {message_id}: {str(e)}" |
| 325 | + logger.error(error_msg, exc_info=True) |
| 326 | + failed_message_ids.append(message_id) |
| 327 | + |
| 328 | + logger.info( |
| 329 | + f"Processing summary: {processed_count} processed, " |
| 330 | + f"{skipped_count} skipped, {len(failed_message_ids)} failed, {total_records} total" |
| 331 | + ) |
| 332 | + |
| 333 | + return { |
| 334 | + "batchItemFailures": [ |
| 335 | + {"itemIdentifier": message_id} for message_id in failed_message_ids |
| 336 | + ] |
| 337 | + } |
| 338 | + |
| 339 | + |
| 340 | +def lambda_handler(event: dict[str, Any], context: object) -> dict[str, Any]: |
| 341 | + """Lambda function handler for SQS events and batchItemFailures.""" |
| 342 | + return handle_sqs_event(event) |
0 commit comments