Skip to content

Commit 8735df6

Browse files
authored
Update README.md
1 parent d95b8a6 commit 8735df6

File tree

1 file changed

+67
-0
lines changed

1 file changed

+67
-0
lines changed

README.md

Lines changed: 67 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,3 +13,70 @@ block decomposition of polygons**" (see [arxiv article](https://arxiv.org/pdf/23
1313
and [presentation](http://tetrahedronvii.cimne.com/slides/Persson.pdf)).
1414

1515
#### See the documentation website for more details: https://lihpc-computational-geometry.github.io/tune/
16+
17+
## Installation
18+
The project can be cloned from github
19+
20+
## Usage
21+
The project can be used to train a reinforcement learning agent on **triangular meshes** or **quadrangular meshes**.
22+
23+
---
24+
25+
### Triangular Meshes
26+
27+
For training on triangular meshes, you can use an agent with all three actions: **flip**, **split**, and **collapse**. Two training models are available:
28+
29+
1. **Custom PPO Model** (`tune/model_RL/PPO_model`)
30+
2. **PPO from Stable Baselines 3 (SB3)**
31+
32+
#### 🚀 Starting Training
33+
34+
##### 1. Using `tune/model_RL/PPO_model`
35+
36+
- Configure the model and environment parameters in:
37+
`tune/training/train.py`
38+
39+
- Then run the following command from the `tune/` directory:
40+
```bash
41+
python main.py
42+
```
43+
44+
45+
##### 2. Using PPO from Stable Baselines 3 (SB3)
46+
47+
- Configure the model and environment parameters in:
48+
- `tune/environment/environment_config.json`
49+
- `tune/model_RL/parameters/PPO_config.json`
50+
51+
- Then run the training script in pycharm `tune/training/train_trimesh_SB3.py`
52+
53+
###### Flip-Only Training (SB3 PPO)
54+
55+
To train an agent using only the flip action with SB3 PPO, run the training script in pycharm `tune/training/train_trimesh_flip_SB3.py`
56+
57+
---
58+
59+
### Quadrangular Meshes
60+
61+
For training on quadrangular meshes, you can use an agent with all four actions: **flip clockwise**, **flip counterclockwise**, **split**, and **collapse**. Two training models are available:
62+
63+
1. **Custom PPO Model** (`tune/model_RL/PPO_model_pers`)
64+
2. **PPO from Stable Baselines 3 (SB3)**
65+
66+
#### 🚀 Starting Training
67+
68+
##### 1. Configure the model and environment parameters in :
69+
- `tune/environment/environment_config.json`
70+
- `tune/model_RL/parameters/PPO_config.json`
71+
72+
##### 2. Using `tune/model_RL/PPO_model_pers`
73+
Run the following command from the `tune/` directory:
74+
```bash
75+
python -m /training/train_quadmesh
76+
```
77+
78+
##### 3. Using PPO from Stable Baselines 3 (SB3)
79+
Run the training script in pycharm `tune/training/train_quadmesh_SB3.py`
80+
81+
82+

0 commit comments

Comments
 (0)