@@ -43,23 +43,35 @@ dimensions-spaces:
4343 mfdim([N,k,chi],1) \\ Cusps
4444 mfdim([N,k,chi],0) \\ New
4545
46- initialize-newspace :
46+ initialize-newspace-common : &initialize-newspace-common
4747 comment : Compute space of new eigenforms
4848 pari : |
4949 [N,k,chi] = [{N},{k},Mod({conrey_index},{N})]
5050 mf = mfinit([N,k,chi],0)
5151 lf = mfeigenbasis(mf)
52- sage : |
53- from sage.modular.dirichlet import DirichletCharacter
54- H = DirichletGroup({N}, base_ring=CyclotomicField({sage_zeta_order}))
55- chi = DirichletCharacter(H, H._module({sage_genvalues}))
56- N = Newforms(chi, {k}, names="a")
5752 magma : |
5853 //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
5954 chi := DirichletCharacter("{N}.{conrey_index}");
6055 S:= CuspForms(chi, {k});
6156 N := Newforms(S);
6257
58+ initialize-newspace-weight-1 :
59+ << : *initialize-newspace-common
60+ sage : |
61+ from sage.modular.dirichlet import DirichletCharacter
62+ H = DirichletGroup({N}, base_ring=CyclotomicField({sage_zeta_order}))
63+ chi = DirichletCharacter(H, H._module({sage_genvalues}))
64+ B = ModularForms(chi, 1).cuspidal_submodule().basis()
65+ N = [B[i] for i in range(len(B))]
66+
67+ initialize-newspace-weight-not-1 :
68+ << : *initialize-newspace-common
69+ sage : |
70+ from sage.modular.dirichlet import DirichletCharacter
71+ H = DirichletGroup({N}, base_ring=CyclotomicField({sage_zeta_order}))
72+ chi = DirichletCharacter(H, H._module({sage_genvalues}))
73+ N = Newforms(chi, {k}, names="a")
74+
6375coeff-field :
6476 comment : Coefficient field, relative polynomial
6577 pari : |
0 commit comments