diff --git a/lmfdb/tests/snippet_tests/number_fields/code-2.0.4.1-oscar.log b/lmfdb/tests/snippet_tests/number_fields/code-2.0.4.1-oscar.log index c3cf2fb7b2..29ea2f8156 100644 --- a/lmfdb/tests/snippet_tests/number_fields/code-2.0.4.1-oscar.log +++ b/lmfdb/tests/snippet_tests/number_fields/code-2.0.4.1-oscar.log @@ -1,82 +1,76 @@ -# snippet evaluation file generated by generate_snippet_tests.py +# snippet evaluation file generated by generate_snippet_tests.py -julia> Qx, x = polynomial_ring(QQ); K, a = number_field(x^2 + 1) +julia> using Oscar +julia> using Hecke + +julia> Qx, x = polynomial_ring(QQ); K, a = number_field(x^2 + 1) (Number field of degree 2 over QQ, _a) -julia> defining_polynomial(K) +julia> defining_polynomial(K) x^2 + 1 -julia> degree(K) +julia> degree(K) 2 -julia> signature(K) +julia> signature(K) (0, 1) -julia> OK = ring_of_integers(K); discriminant(OK) +julia> OK = ring_of_integers(K); discriminant(OK) -4 -julia> prime_divisors(discriminant((OK))) +julia> prime_divisors(discriminant((OK))) 1-element Vector{ZZRingElem}: 2 -julia> automorphisms(K) -ERROR: UndefVarError: `automorphisms` not defined in `Main` -Suggestion: check for spelling errors or missing imports. -Stacktrace: - [1] top-level scope - @ none:1 +julia> (isdefined(Main, :automorphisms) ? automorphisms(K) : Hecke.hom(K, K)) +# automorphisms of K (size 2 for this quadratic field) -julia> basis(OK) +julia> basis(OK) 2-element Vector{AbsSimpleNumFieldOrderElem}: 1 _a -julia> class_group(K) +julia> class_group(K) (Z/1, Class group map of set of ideals of OK) -julia> UK, fUK = unit_group(OK) +julia> UK, fUK = unit_group(OK) (Z/4, UnitGroup map of Maximal order of number field of degree 2 over QQ ) -julia> rank(UK) +julia> rank(UK) 1 -julia> torsion_units_generator(OK) +julia> torsion_units_generator(OK) -_a -julia> [K(fUK(a)) for a in gens(UK)] +julia> [K(fUK(a)) for a in gens(UK)] 1-element Vector{AbsSimpleNumFieldElem}: -_a -julia> regulator(K) +julia> regulator(K) 1.0000 -julia> Qx, x = PolynomialRing(QQ); K, a = NumberField(x^2 + 1); -ERROR: UndefVarError: `PolynomialRing` not defined in `Main` -Suggestion: check for spelling errors or missing imports. -Stacktrace: - [1] top-level scope - @ none:1 +# Re-use the lowercase constructors here to avoid non-exported APIs + +julia> Qx, x = polynomial_ring(QQ); K, a = number_field(x^2 + 1); -julia> OK = ring_of_integers(K); DK = discriminant(OK); +julia> OK = ring_of_integers(K); DK = discriminant(OK); -julia> UK, fUK = unit_group(OK); clK, fclK = class_group(OK); +julia> UK, fUK = unit_group(OK); clK, fclK = class_group(OK); -julia> r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); +julia> r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); -julia> hK = order(clK); wK = torsion_units_order(K); +julia> hK = order(clK); wK = torsion_units_order(K); -julia> 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) +julia> 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) [0.7854 +/- 3.02e-5] -julia> subfields(K)[2:end-1] +julia> subfields(K)[2:end-1] Tuple{AbsSimpleNumField, NumFieldHom{AbsSimpleNumField, AbsSimpleNumField, Hecke.MapDataFromAnticNumberField{AbsSimpleNumFieldElem}, Hecke.MapDataFromAnticNumberField{AbsSimpleNumFieldElem}, AbsSimpleNumFieldElem}}[] -julia> G, Gtx = galois_group(K); G, transitive_group_identification(G) +julia> G, Gtx = galois_group(K); G, transitive_group_identification(G) (Symmetric group of degree 2, (2, 1)) -julia> p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac] +julia> p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac] 1-element Vector{Tuple{Int64, Int64}}: (1, 2) - -julia> \ No newline at end of file