From aac9f1f42d97a67678456f07bfc6aa77fd03c007 Mon Sep 17 00:00:00 2001 From: Lakshya747 Date: Tue, 22 Oct 2024 12:44:00 +0530 Subject: [PATCH] Updated diophantine_equation.py --- blockchain/diophantine_equation.py | 114 +++++------------------------ 1 file changed, 17 insertions(+), 97 deletions(-) diff --git a/blockchain/diophantine_equation.py b/blockchain/diophantine_equation.py index ae6a145d2922..ef89be9010ac 100644 --- a/blockchain/diophantine_equation.py +++ b/blockchain/diophantine_equation.py @@ -1,109 +1,29 @@ from __future__ import annotations -from maths.greatest_common_divisor import greatest_common_divisor +def gcd(a: int, b: int) -> int: + while b: + a, b = b, a % b + return a +def extended_gcd(a: int, b: int) -> tuple[int, int, int]: + if b == 0: + return a, 1, 0 + d, x, y = extended_gcd(b, a % b) + return d, y, x - (a // b) * y def diophantine(a: int, b: int, c: int) -> tuple[float, float]: - """ - Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the - diophantine equation a*x + b*y = c has a solution (where x and y are integers) - iff greatest_common_divisor(a,b) divides c. - - GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) - - >>> diophantine(10,6,14) - (-7.0, 14.0) - - >>> diophantine(391,299,-69) - (9.0, -12.0) - - But above equation has one more solution i.e., x = -4, y = 5. - That's why we need diophantine all solution function. - - """ - - assert ( - c % greatest_common_divisor(a, b) == 0 - ) # greatest_common_divisor(a,b) is in maths directory - (d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below + d = gcd(a, b) + assert c % d == 0 + x, y = extended_gcd(a, b)[1:] r = c / d - return (r * x, r * y) - + return r * x, r * y def diophantine_all_soln(a: int, b: int, c: int, n: int = 2) -> None: - """ - Lemma : if n|ab and gcd(a,n) = 1, then n|b. - - Finding All solutions of Diophantine Equations: - - Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of - Diophantine Equation a*x + b*y = c. a*x0 + b*y0 = c, then all the - solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, - where t is an arbitrary integer. - - n is the number of solution you want, n = 2 by default - - >>> diophantine_all_soln(10, 6, 14) - -7.0 14.0 - -4.0 9.0 - - >>> diophantine_all_soln(10, 6, 14, 4) - -7.0 14.0 - -4.0 9.0 - -1.0 4.0 - 2.0 -1.0 - - >>> diophantine_all_soln(391, 299, -69, n = 4) - 9.0 -12.0 - 22.0 -29.0 - 35.0 -46.0 - 48.0 -63.0 - - """ - (x0, y0) = diophantine(a, b, c) # Initial value - d = greatest_common_divisor(a, b) - p = a // d - q = b // d - + x0, y0 = diophantine(a, b, c) + p, q = a // gcd(a, b), b // gcd(a, b) for i in range(n): - x = x0 + i * q - y = y0 - i * p - print(x, y) - - -def extended_gcd(a: int, b: int) -> tuple[int, int, int]: - """ - Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers - x and y, then d = gcd(a,b) - - >>> extended_gcd(10, 6) - (2, -1, 2) - - >>> extended_gcd(7, 5) - (1, -2, 3) - - """ - assert a >= 0 - assert b >= 0 - - if b == 0: - d, x, y = a, 1, 0 - else: - (d, p, q) = extended_gcd(b, a % b) - x = q - y = p - q * (a // b) - - assert a % d == 0 - assert b % d == 0 - assert d == a * x + b * y - - return (d, x, y) - + print(x0 + i * q, y0 - i * p) if __name__ == "__main__": from doctest import testmod - - testmod(name="diophantine", verbose=True) - testmod(name="diophantine_all_soln", verbose=True) - testmod(name="extended_gcd", verbose=True) - testmod(name="greatest_common_divisor", verbose=True) + testmod()