|
20 | 20 | }, |
21 | 21 | { |
22 | 22 | "cell_type": "code", |
23 | | - "execution_count": 5, |
| 23 | + "execution_count": 4, |
24 | 24 | "id": "66c9a7e7", |
25 | 25 | "metadata": {}, |
26 | 26 | "outputs": [], |
|
243 | 243 | }, |
244 | 244 | { |
245 | 245 | "cell_type": "code", |
246 | | - "execution_count": 56, |
| 246 | + "execution_count": 6, |
247 | 247 | "id": "da059f8a", |
248 | 248 | "metadata": {}, |
249 | | - "outputs": [], |
| 249 | + "outputs": [ |
| 250 | + { |
| 251 | + "data": { |
| 252 | + "text/html": [ |
| 253 | + "<div>\n", |
| 254 | + "<style scoped>\n", |
| 255 | + " .dataframe tbody tr th:only-of-type {\n", |
| 256 | + " vertical-align: middle;\n", |
| 257 | + " }\n", |
| 258 | + "\n", |
| 259 | + " .dataframe tbody tr th {\n", |
| 260 | + " vertical-align: top;\n", |
| 261 | + " }\n", |
| 262 | + "\n", |
| 263 | + " .dataframe thead th {\n", |
| 264 | + " text-align: right;\n", |
| 265 | + " }\n", |
| 266 | + "</style>\n", |
| 267 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 268 | + " <thead>\n", |
| 269 | + " <tr style=\"text-align: right;\">\n", |
| 270 | + " <th></th>\n", |
| 271 | + " <th>Commodity Name</th>\n", |
| 272 | + " <th>City Name</th>\n", |
| 273 | + " <th>Type</th>\n", |
| 274 | + " <th>Package</th>\n", |
| 275 | + " <th>Variety</th>\n", |
| 276 | + " <th>Sub Variety</th>\n", |
| 277 | + " <th>Grade</th>\n", |
| 278 | + " <th>Date</th>\n", |
| 279 | + " <th>Low Price</th>\n", |
| 280 | + " <th>High Price</th>\n", |
| 281 | + " <th>...</th>\n", |
| 282 | + " <th>Color</th>\n", |
| 283 | + " <th>Environment</th>\n", |
| 284 | + " <th>Unit of Sale</th>\n", |
| 285 | + " <th>Quality</th>\n", |
| 286 | + " <th>Condition</th>\n", |
| 287 | + " <th>Appearance</th>\n", |
| 288 | + " <th>Storage</th>\n", |
| 289 | + " <th>Crop</th>\n", |
| 290 | + " <th>Repack</th>\n", |
| 291 | + " <th>Trans Mode</th>\n", |
| 292 | + " </tr>\n", |
| 293 | + " </thead>\n", |
| 294 | + " <tbody>\n", |
| 295 | + " <tr>\n", |
| 296 | + " <th>0</th>\n", |
| 297 | + " <td>PUMPKINS</td>\n", |
| 298 | + " <td>BALTIMORE</td>\n", |
| 299 | + " <td>NaN</td>\n", |
| 300 | + " <td>24 inch bins</td>\n", |
| 301 | + " <td>NaN</td>\n", |
| 302 | + " <td>NaN</td>\n", |
| 303 | + " <td>NaN</td>\n", |
| 304 | + " <td>04/29/2017</td>\n", |
| 305 | + " <td>270</td>\n", |
| 306 | + " <td>280.0</td>\n", |
| 307 | + " <td>...</td>\n", |
| 308 | + " <td>NaN</td>\n", |
| 309 | + " <td>NaN</td>\n", |
| 310 | + " <td>NaN</td>\n", |
| 311 | + " <td>NaN</td>\n", |
| 312 | + " <td>NaN</td>\n", |
| 313 | + " <td>NaN</td>\n", |
| 314 | + " <td>NaN</td>\n", |
| 315 | + " <td>NaN</td>\n", |
| 316 | + " <td>E</td>\n", |
| 317 | + " <td>NaN</td>\n", |
| 318 | + " </tr>\n", |
| 319 | + " <tr>\n", |
| 320 | + " <th>1</th>\n", |
| 321 | + " <td>PUMPKINS</td>\n", |
| 322 | + " <td>BALTIMORE</td>\n", |
| 323 | + " <td>NaN</td>\n", |
| 324 | + " <td>24 inch bins</td>\n", |
| 325 | + " <td>NaN</td>\n", |
| 326 | + " <td>NaN</td>\n", |
| 327 | + " <td>NaN</td>\n", |
| 328 | + " <td>05/06/2017</td>\n", |
| 329 | + " <td>270</td>\n", |
| 330 | + " <td>280.0</td>\n", |
| 331 | + " <td>...</td>\n", |
| 332 | + " <td>NaN</td>\n", |
| 333 | + " <td>NaN</td>\n", |
| 334 | + " <td>NaN</td>\n", |
| 335 | + " <td>NaN</td>\n", |
| 336 | + " <td>NaN</td>\n", |
| 337 | + " <td>NaN</td>\n", |
| 338 | + " <td>NaN</td>\n", |
| 339 | + " <td>NaN</td>\n", |
| 340 | + " <td>E</td>\n", |
| 341 | + " <td>NaN</td>\n", |
| 342 | + " </tr>\n", |
| 343 | + " <tr>\n", |
| 344 | + " <th>2</th>\n", |
| 345 | + " <td>PUMPKINS</td>\n", |
| 346 | + " <td>BALTIMORE</td>\n", |
| 347 | + " <td>NaN</td>\n", |
| 348 | + " <td>24 inch bins</td>\n", |
| 349 | + " <td>HOWDEN TYPE</td>\n", |
| 350 | + " <td>NaN</td>\n", |
| 351 | + " <td>NaN</td>\n", |
| 352 | + " <td>09/24/2016</td>\n", |
| 353 | + " <td>160</td>\n", |
| 354 | + " <td>160.0</td>\n", |
| 355 | + " <td>...</td>\n", |
| 356 | + " <td>NaN</td>\n", |
| 357 | + " <td>NaN</td>\n", |
| 358 | + " <td>NaN</td>\n", |
| 359 | + " <td>NaN</td>\n", |
| 360 | + " <td>NaN</td>\n", |
| 361 | + " <td>NaN</td>\n", |
| 362 | + " <td>NaN</td>\n", |
| 363 | + " <td>NaN</td>\n", |
| 364 | + " <td>N</td>\n", |
| 365 | + " <td>NaN</td>\n", |
| 366 | + " </tr>\n", |
| 367 | + " <tr>\n", |
| 368 | + " <th>3</th>\n", |
| 369 | + " <td>PUMPKINS</td>\n", |
| 370 | + " <td>BALTIMORE</td>\n", |
| 371 | + " <td>NaN</td>\n", |
| 372 | + " <td>24 inch bins</td>\n", |
| 373 | + " <td>HOWDEN TYPE</td>\n", |
| 374 | + " <td>NaN</td>\n", |
| 375 | + " <td>NaN</td>\n", |
| 376 | + " <td>09/24/2016</td>\n", |
| 377 | + " <td>160</td>\n", |
| 378 | + " <td>160.0</td>\n", |
| 379 | + " <td>...</td>\n", |
| 380 | + " <td>NaN</td>\n", |
| 381 | + " <td>NaN</td>\n", |
| 382 | + " <td>NaN</td>\n", |
| 383 | + " <td>NaN</td>\n", |
| 384 | + " <td>NaN</td>\n", |
| 385 | + " <td>NaN</td>\n", |
| 386 | + " <td>NaN</td>\n", |
| 387 | + " <td>NaN</td>\n", |
| 388 | + " <td>N</td>\n", |
| 389 | + " <td>NaN</td>\n", |
| 390 | + " </tr>\n", |
| 391 | + " <tr>\n", |
| 392 | + " <th>4</th>\n", |
| 393 | + " <td>PUMPKINS</td>\n", |
| 394 | + " <td>BALTIMORE</td>\n", |
| 395 | + " <td>NaN</td>\n", |
| 396 | + " <td>24 inch bins</td>\n", |
| 397 | + " <td>HOWDEN TYPE</td>\n", |
| 398 | + " <td>NaN</td>\n", |
| 399 | + " <td>NaN</td>\n", |
| 400 | + " <td>11/05/2016</td>\n", |
| 401 | + " <td>90</td>\n", |
| 402 | + " <td>100.0</td>\n", |
| 403 | + " <td>...</td>\n", |
| 404 | + " <td>NaN</td>\n", |
| 405 | + " <td>NaN</td>\n", |
| 406 | + " <td>NaN</td>\n", |
| 407 | + " <td>NaN</td>\n", |
| 408 | + " <td>NaN</td>\n", |
| 409 | + " <td>NaN</td>\n", |
| 410 | + " <td>NaN</td>\n", |
| 411 | + " <td>NaN</td>\n", |
| 412 | + " <td>N</td>\n", |
| 413 | + " <td>NaN</td>\n", |
| 414 | + " </tr>\n", |
| 415 | + " </tbody>\n", |
| 416 | + "</table>\n", |
| 417 | + "<p>5 rows × 25 columns</p>\n", |
| 418 | + "</div>" |
| 419 | + ], |
| 420 | + "text/plain": [ |
| 421 | + " Commodity Name City Name Type Package Variety Sub Variety \\\n", |
| 422 | + "0 PUMPKINS BALTIMORE NaN 24 inch bins NaN NaN \n", |
| 423 | + "1 PUMPKINS BALTIMORE NaN 24 inch bins NaN NaN \n", |
| 424 | + "2 PUMPKINS BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN \n", |
| 425 | + "3 PUMPKINS BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN \n", |
| 426 | + "4 PUMPKINS BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN \n", |
| 427 | + "\n", |
| 428 | + " Grade Date Low Price High Price ... Color Environment \\\n", |
| 429 | + "0 NaN 04/29/2017 270 280.0 ... NaN NaN \n", |
| 430 | + "1 NaN 05/06/2017 270 280.0 ... NaN NaN \n", |
| 431 | + "2 NaN 09/24/2016 160 160.0 ... NaN NaN \n", |
| 432 | + "3 NaN 09/24/2016 160 160.0 ... NaN NaN \n", |
| 433 | + "4 NaN 11/05/2016 90 100.0 ... NaN NaN \n", |
| 434 | + "\n", |
| 435 | + " Unit of Sale Quality Condition Appearance Storage Crop Repack Trans Mode \n", |
| 436 | + "0 NaN NaN NaN NaN NaN NaN E NaN \n", |
| 437 | + "1 NaN NaN NaN NaN NaN NaN E NaN \n", |
| 438 | + "2 NaN NaN NaN NaN NaN NaN N NaN \n", |
| 439 | + "3 NaN NaN NaN NaN NaN NaN N NaN \n", |
| 440 | + "4 NaN NaN NaN NaN NaN NaN N NaN \n", |
| 441 | + "\n", |
| 442 | + "[5 rows x 25 columns]" |
| 443 | + ] |
| 444 | + }, |
| 445 | + "execution_count": 6, |
| 446 | + "metadata": {}, |
| 447 | + "output_type": "execute_result" |
| 448 | + } |
| 449 | + ], |
250 | 450 | "source": [ |
251 | | - "# Combine the four dataframes into one!\n" |
| 451 | + "# Combine the four dataframes into one!\n", |
| 452 | + "# Combine all Northeast dataframes\n", |
| 453 | + "# Combine all Northeast dataframes\n", |
| 454 | + "northeast = pd.concat([baltimore, boston, newyork, philly], ignore_index=True)\n", |
| 455 | + "\n", |
| 456 | + "# Show first few rows\n", |
| 457 | + "northeast.head()" |
252 | 458 | ] |
253 | 459 | }, |
254 | 460 | { |
|
266 | 472 | }, |
267 | 473 | { |
268 | 474 | "cell_type": "code", |
269 | | - "execution_count": 57, |
| 475 | + "execution_count": 7, |
270 | 476 | "id": "c839639a", |
271 | 477 | "metadata": {}, |
272 | | - "outputs": [], |
| 478 | + "outputs": [ |
| 479 | + { |
| 480 | + "data": { |
| 481 | + "text/html": [ |
| 482 | + "<div>\n", |
| 483 | + "<style scoped>\n", |
| 484 | + " .dataframe tbody tr th:only-of-type {\n", |
| 485 | + " vertical-align: middle;\n", |
| 486 | + " }\n", |
| 487 | + "\n", |
| 488 | + " .dataframe tbody tr th {\n", |
| 489 | + " vertical-align: top;\n", |
| 490 | + " }\n", |
| 491 | + "\n", |
| 492 | + " .dataframe thead th {\n", |
| 493 | + " text-align: right;\n", |
| 494 | + " }\n", |
| 495 | + "</style>\n", |
| 496 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 497 | + " <thead>\n", |
| 498 | + " <tr style=\"text-align: right;\">\n", |
| 499 | + " <th></th>\n", |
| 500 | + " <th>Low Price</th>\n", |
| 501 | + " <th>High Price</th>\n", |
| 502 | + " </tr>\n", |
| 503 | + " <tr>\n", |
| 504 | + " <th>Unit of Sale</th>\n", |
| 505 | + " <th></th>\n", |
| 506 | + " <th></th>\n", |
| 507 | + " </tr>\n", |
| 508 | + " </thead>\n", |
| 509 | + " <tbody>\n", |
| 510 | + " <tr>\n", |
| 511 | + " <th>EACH</th>\n", |
| 512 | + " <td>47.916667</td>\n", |
| 513 | + " <td>59.166667</td>\n", |
| 514 | + " </tr>\n", |
| 515 | + " <tr>\n", |
| 516 | + " <th>PER BIN</th>\n", |
| 517 | + " <td>185.845070</td>\n", |
| 518 | + " <td>206.619718</td>\n", |
| 519 | + " </tr>\n", |
| 520 | + " <tr>\n", |
| 521 | + " <th>SHELLACKED</th>\n", |
| 522 | + " <td>16.000000</td>\n", |
| 523 | + " <td>17.545455</td>\n", |
| 524 | + " </tr>\n", |
| 525 | + " </tbody>\n", |
| 526 | + "</table>\n", |
| 527 | + "</div>" |
| 528 | + ], |
| 529 | + "text/plain": [ |
| 530 | + " Low Price High Price\n", |
| 531 | + "Unit of Sale \n", |
| 532 | + "EACH 47.916667 59.166667\n", |
| 533 | + "PER BIN 185.845070 206.619718\n", |
| 534 | + "SHELLACKED 16.000000 17.545455" |
| 535 | + ] |
| 536 | + }, |
| 537 | + "execution_count": 7, |
| 538 | + "metadata": {}, |
| 539 | + "output_type": "execute_result" |
| 540 | + } |
| 541 | + ], |
273 | 542 | "source": [ |
274 | | - "# Put your code here to find the mean low and high prices in the Northeast region for each type of unit of sale.\n" |
| 543 | + "# Put your code here to find the mean low and high prices in the Northeast region for each type of unit of sale.\n", |
| 544 | + "mean_prices = northeast.groupby(\"Unit of Sale\")[[\"Low Price\", \"High Price\"]].mean()\n", |
| 545 | + "\n", |
| 546 | + "mean_prices" |
275 | 547 | ] |
276 | 548 | }, |
277 | 549 | { |
278 | 550 | "cell_type": "code", |
279 | | - "execution_count": 58, |
| 551 | + "execution_count": 8, |
280 | 552 | "id": "b4b23352", |
281 | 553 | "metadata": {}, |
282 | | - "outputs": [], |
| 554 | + "outputs": [ |
| 555 | + { |
| 556 | + "data": { |
| 557 | + "text/plain": [ |
| 558 | + "Variety\n", |
| 559 | + "BIG MACK TYPE 55.0\n", |
| 560 | + "BLUE TYPE 7.0\n", |
| 561 | + "CINDERELLA 39.0\n", |
| 562 | + "FAIRYTALE 37.0\n", |
| 563 | + "HOWDEN TYPE 224.0\n", |
| 564 | + "HOWDEN WHITE TYPE 2.0\n", |
| 565 | + "KNUCKLE HEAD 9.0\n", |
| 566 | + "MINIATURE 97.0\n", |
| 567 | + "MIXED HEIRLOOM VARIETIES 4.0\n", |
| 568 | + "PIE TYPE 198.0\n", |
| 569 | + "Name: Variety, dtype: float64" |
| 570 | + ] |
| 571 | + }, |
| 572 | + "execution_count": 8, |
| 573 | + "metadata": {}, |
| 574 | + "output_type": "execute_result" |
| 575 | + } |
| 576 | + ], |
283 | 577 | "source": [ |
284 | | - "# Put your code here to find the average number of pumpkins coming into terminal markets of each variety.\n" |
| 578 | + "# Put your code here to find the average number of pumpkins coming into terminal markets of each variety.\n", |
| 579 | + "avg_pumpkins_per_variety = northeast.groupby(\"Variety\")[\"Variety\"].count() / 1\n", |
| 580 | + "\n", |
| 581 | + "avg_pumpkins_per_variety" |
285 | 582 | ] |
286 | 583 | }, |
287 | 584 | { |
|
0 commit comments