|
| 1 | +from typing import List |
| 2 | +from dataclasses import dataclass |
| 3 | +import random |
| 4 | + |
| 5 | +from datasets import load_dataset |
| 6 | +from sentence_transformers import InputExample |
| 7 | + |
| 8 | +############## |
| 9 | +# PAIRS |
| 10 | +############## |
| 11 | + |
| 12 | + |
| 13 | +@dataclass |
| 14 | +class WReTE: |
| 15 | + dataset = load_dataset("SEACrowd/wrete", split="train", trust_remote_code=True) |
| 16 | + # filter for entailment pairs |
| 17 | + dataset = dataset.filter(lambda example: example["label"] == "Entail_or_Paraphrase") |
| 18 | + |
| 19 | + @staticmethod |
| 20 | + def train_samples() -> List[InputExample]: |
| 21 | + train_samples = [] |
| 22 | + |
| 23 | + for datum in WReTE.dataset: |
| 24 | + train_samples.append(InputExample(texts=[datum["sent_A"], datum["sent_B"]])) |
| 25 | + |
| 26 | + return train_samples |
| 27 | + |
| 28 | + |
| 29 | +@dataclass |
| 30 | +class IndoLEMNTP: |
| 31 | + dataset = load_dataset("SEACrowd/indolem_ntp", split="train", trust_remote_code=True) |
| 32 | + # filter for entailment pairs |
| 33 | + dataset = dataset.filter(lambda example: example["label"] == 1) |
| 34 | + |
| 35 | + @staticmethod |
| 36 | + def train_samples() -> List[InputExample]: |
| 37 | + train_samples = [] |
| 38 | + |
| 39 | + for datum in IndoLEMNTP.dataset: |
| 40 | + train_samples.append(InputExample(texts=[datum["tweets"], datum["next_tweet"]])) |
| 41 | + |
| 42 | + return train_samples |
| 43 | + |
| 44 | + |
| 45 | +@dataclass |
| 46 | +class TyDiQA: |
| 47 | + dataset = load_dataset("khalidalt/tydiqa-goldp", "indonesian", split="train", trust_remote_code=True).shuffle( |
| 48 | + seed=42 |
| 49 | + ) |
| 50 | + |
| 51 | + @staticmethod |
| 52 | + def train_samples() -> List[InputExample]: |
| 53 | + train_samples = [] |
| 54 | + |
| 55 | + for datum in TyDiQA.dataset: |
| 56 | + train_samples.append(InputExample(texts=[datum["question_text"], datum["passage_text"]])) |
| 57 | + train_samples.append(InputExample(texts=[datum["question_text"], datum["answers"]["text"][0]])) |
| 58 | + |
| 59 | + return train_samples |
| 60 | + |
| 61 | + |
| 62 | +@dataclass |
| 63 | +class FacQA: |
| 64 | + dataset = load_dataset("SEACrowd/facqa", split="train", trust_remote_code=True) |
| 65 | + |
| 66 | + @staticmethod |
| 67 | + def train_samples() -> List[InputExample]: |
| 68 | + train_samples = [] |
| 69 | + |
| 70 | + for datum in FacQA.dataset: |
| 71 | + question = " ".join(datum["question"]) |
| 72 | + passage = " ".join(datum["passage"]) |
| 73 | + answer = " ".join(t for t, l in zip(datum["passage"], datum["seq_label"]) if l != "O") |
| 74 | + |
| 75 | + train_samples.append(InputExample(texts=[question, passage])) |
| 76 | + train_samples.append(InputExample(texts=[question, answer])) |
| 77 | + |
| 78 | + return train_samples |
| 79 | + |
| 80 | + |
| 81 | +############## |
| 82 | +# TRIPLETS |
| 83 | +############## |
| 84 | + |
| 85 | + |
| 86 | +@dataclass |
| 87 | +class mMARCO: |
| 88 | + dataset = load_dataset("unicamp-dl/mmarco", "indonesian", split="train", trust_remote_code=True) |
| 89 | + # limit to only 100,000 rows |
| 90 | + dataset = dataset.shuffle(seed=42).select(range(100_000)) |
| 91 | + |
| 92 | + @staticmethod |
| 93 | + def train_samples() -> List[InputExample]: |
| 94 | + train_samples = [] |
| 95 | + |
| 96 | + for datum in mMARCO.dataset: |
| 97 | + train_samples.append( |
| 98 | + InputExample( |
| 99 | + texts=[ |
| 100 | + datum["query"], |
| 101 | + datum["positive"], |
| 102 | + datum["negative"], |
| 103 | + ] |
| 104 | + ) |
| 105 | + ) |
| 106 | + |
| 107 | + return train_samples |
| 108 | + |
| 109 | + |
| 110 | +@dataclass |
| 111 | +class MIRACL: |
| 112 | + dataset = load_dataset("miracl/miracl", "id", split="train", trust_remote_code=True) |
| 113 | + |
| 114 | + @staticmethod |
| 115 | + def train_samples() -> List[InputExample]: |
| 116 | + train_samples = [] |
| 117 | + |
| 118 | + for datum in MIRACL.dataset: |
| 119 | + query = datum["query"] |
| 120 | + positives = [doc["text"] for doc in datum["positive_passages"]] |
| 121 | + negatives = [doc["text"] for doc in datum["negative_passages"]] |
| 122 | + |
| 123 | + if len(negatives) > 0: |
| 124 | + train_samples.append(InputExample(texts=[query, random.choice(positives), random.choice(negatives)])) |
| 125 | + train_samples.append(InputExample(texts=[random.choice(positives), query, random.choice(negatives)])) |
| 126 | + |
| 127 | + return train_samples |
| 128 | + |
| 129 | + |
| 130 | +@dataclass |
| 131 | +class IndoStoryCloze: |
| 132 | + dataset = load_dataset("indolem/indo_story_cloze", split="train", trust_remote_code=True) |
| 133 | + |
| 134 | + @staticmethod |
| 135 | + def train_samples() -> List[InputExample]: |
| 136 | + train_samples = [] |
| 137 | + |
| 138 | + for datum in IndoStoryCloze.dataset: |
| 139 | + context = ". ".join([datum["sentence-1"], datum["sentence-2"], datum["sentence-3"], datum["sentence-4"]]) |
| 140 | + train_samples.append( |
| 141 | + InputExample( |
| 142 | + texts=[ |
| 143 | + context, |
| 144 | + datum["correct_ending"], |
| 145 | + datum["incorrect_ending"], |
| 146 | + ] |
| 147 | + ) |
| 148 | + ) |
| 149 | + |
| 150 | + return train_samples |
| 151 | + |
| 152 | + |
| 153 | +@dataclass |
| 154 | +class IndoNLI: |
| 155 | + dataset = load_dataset("indonli", split="train", trust_remote_code=True) |
| 156 | + id2label = {0: "entailment", 1: "neutral", 2: "contradiction"} |
| 157 | + |
| 158 | + @staticmethod |
| 159 | + def train_samples() -> List[InputExample]: |
| 160 | + def add_to_samples(sent1, sent2, label): |
| 161 | + if sent1 not in train_data: |
| 162 | + train_data[sent1] = {"contradiction": set(), "entailment": set(), "neutral": set()} |
| 163 | + train_data[sent1][label].add(sent2) |
| 164 | + |
| 165 | + train_data = {} |
| 166 | + train_samples = [] |
| 167 | + |
| 168 | + for datum in IndoNLI.dataset: |
| 169 | + sent1 = datum["premise"].strip() |
| 170 | + sent2 = datum["hypothesis"].strip() |
| 171 | + |
| 172 | + add_to_samples(sent1, sent2, IndoNLI.id2label[datum["label"]]) |
| 173 | + add_to_samples(sent2, sent1, IndoNLI.id2label[datum["label"]]) # Also add the opposite |
| 174 | + |
| 175 | + for sent1, others in train_data.items(): |
| 176 | + if len(others["entailment"]) > 0 and len(others["contradiction"]) > 0: |
| 177 | + train_samples.append( |
| 178 | + InputExample( |
| 179 | + texts=[ |
| 180 | + sent1, |
| 181 | + random.choice(list(others["entailment"])), |
| 182 | + random.choice(list(others["contradiction"])), |
| 183 | + ] |
| 184 | + ) |
| 185 | + ) |
| 186 | + train_samples.append( |
| 187 | + InputExample( |
| 188 | + texts=[ |
| 189 | + random.choice(list(others["entailment"])), |
| 190 | + sent1, |
| 191 | + random.choice(list(others["contradiction"])), |
| 192 | + ] |
| 193 | + ) |
| 194 | + ) |
| 195 | + |
| 196 | + return train_samples |
0 commit comments