11[ ![ Dev] ( https://img.shields.io/badge/docs-dev-blue.svg )] ( https://learningtooptimize.github.io/LearningToControlClass/dev/ )
22
33# Special Topics on Optimal Control and Learning — Fall 2025 (ISYE 8803 VAN)
4- * Georgia Institute of Technology – Fridays 2 pm ET*
4+ * Georgia Institute of Technology – Fridays 2-4:45 pm ET*
55
66** Designers:** Andrew Rosemberg & Michael Klamkin
77** Instructor:** Prof. Pascal Van Hentenryck
@@ -25,22 +25,36 @@ This student-led course explores modern techniques for controlling — and learn
2525
2626## Weekly Schedule (Fall 2025 – Fridays 2 p.m. ET)
2727
28+ #### In-person:
29+
2830| # | Date (MM/DD) | Format / Presenter | Topic & Learning Goals | Prep / Key Resources |
2931| ----| --------------| --------------------| ------------------------| ----------------------|
30- | 1 | 08/22/2025 | Lecture — Andrew Rosemberg | Course map; why PDE-constrained ** optimization** ; tooling overview; stability & state-space dynamics; Lyapunov; discretization issues | |
31- | 2 | 08/29/2025 | Lecture | Numerical ** optimization** for control (grad/SQP/QP); ALM vs. interior-point vs. penalty methods | |
32- | 3 | 09/05/2025 | Lecture | Pontryagin’s Maximum Principle; shooting & multiple shooting; LQR, Riccati, QP viewpoint (finite / infinite horizon) | |
32+ | 1 | 08/22/2025 | Lecture — Andrew Rosemberg | Course map; why PDE-constrained ** optimization** ; tooling overview; stability & state-space dynamics; Lyapunov; discretization issues | [ 📚 ] ( https://learningtooptimize.github.io/LearningToControlClass/dev/class01/class01/ ) |
33+ | 2 | 08/29/2025 | Lecture - TBD | Numerical ** optimization** for control (grad/SQP/QP); ALM vs. interior-point vs. penalty methods | |
34+ | 3 | 09/05/2025 | Lecture - TBD | Pontryagin’s Maximum Principle; shooting & multiple shooting; LQR, Riccati, QP viewpoint (finite / infinite horizon) | |
3335| 4 | 09/12/2025 | ** External seminar 1** - Joaquim Dias Garcia| Dynamic Programming & Model-Predictive Control | |
3436| 5 | 09/19/2025 | Lecture - Guancheng "Ivan" Qiu | ** Nonlinear** trajectory ** optimization** ; collocation; implicit integration | |
3537| 6 | 09/26/2025 | ** External seminar 2** - Henrique Ferrolho | Trajectory ** optimization** on robots in Julia Robotics | |
36- | 7 | 10/03/2025 | Lecture | Essentials of PDEs for control engineers; weak forms; FEM/FDM review | |
38+ | 7 | 10/03/2025 | Lecture - TBD | Essentials of PDEs for control engineers; weak forms; FEM/FDM review | |
3739| 8 | 10/10/2025 | ** External seminar 3** TBD (speaker to be confirmed) | Topology ** optimization** | |
3840| 9 | 10/17/2025 | ** External seminar 4** — François Pacaud | GPU-accelerated optimal control | |
3941| 10 | 10/24/2025 | Lecture - Michael Klamkin | Physics-Informed Neural Networks (PINNs): formulation & pitfalls | |
4042| 11 | 10/31/2025 | ** External seminar 5** - Chris Rackauckas | Neural Differential Equations: PINNs + classical solvers | |
4143| 12 | 11/07/2025 | Lecture - Pedro Paulo | Neural operators (FNO, Galerkin Transformer); large-scale surrogates | |
4244| 13 | 11/14/2025 | ** External seminar 6** - Charlelie Laurent | Scalable PINNs / neural operators; CFD & weather applications | |
43- | 14 | 11/21/2025 | Lecture | Robust control & min-max DDP (incl. PDE cases); chance constraints; Data-driven control & RL-in-the-loop | |
45+ | 14 | 11/21/2025 | Lecture - TBD | TBD from the pool | |
46+
47+ #### Pool of additional topics
48+
49+ If there are more students than slots, we will select from the following topics for recorded-lectures.
50+ Students must provide materials equivalent to an in-person session.
51+
52+ | # | Format / Presenter | Topic & Learning Goals | Prep / Key Resources |
53+ | ---| --------------------| ------------------------| ----------------------|
54+ | 15 | Lecture - TBD | Quaternions, Lie groups, and Lie algebras; attitude control; LQR with Attitude, Quadrotors | |
55+ | 16 | Lecture - TBD | Contact Explict and Contact Implicit; Trajectory Optimization for Hybrid and Composed Systems; | |
56+ | 16 | Lecture - TBD | Trajectory Optimization with Obstacles; Convexification of Non-Convex Constraints; | |
57+ | 17 | Lecture - TBD | Robust control & min-max DDP (incl. PDE cases); chance constraints; Data-driven control & Model-Based RL-in-the-loop | |
4458
4559## Reference Material
4660
0 commit comments