Skip to content

Commit 8b6e0eb

Browse files
author
Pedro Paulo
committed
Test
1 parent 7fcb94e commit 8b6e0eb

File tree

1 file changed

+15
-8
lines changed

1 file changed

+15
-8
lines changed

β€Žclass12/class12.mdβ€Ž

Lines changed: 15 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -108,20 +108,22 @@ Let:
108108
- $\psi_1,\text{...},\psi_m$ be the PCA basis functions of the output space $\mathcal Y$.
109109

110110
The final approximation $\mathcal G^\dagger_{\text{PCA}}:\mathcal X \times \Theta \rightarrow \mathcal Y$ is then given by:
111-
$$
112-
\begin{flalign}
111+
```math
112+
\begin{align}
113113
\mathcal G^\dagger_{\text{PCA}}&(x;\theta)(u)=\sum_{j=0}^m\varphi_j(\mathrm Lx;\theta)\psi_j(u) \ \ \ \ \forall\ x\in\mathcal X \ \ \ \ u\in D_u
114-
\end{flalign}
115-
$$
114+
\end{align}
115+
```
116116
That is, the output is the *linear combination* of the PCA output basis functions {$\psi_j$}, weighted by NN coefficients $\varphi_j$, that have as input the $\mathrm Lx$ mapping of the input to the PCA space.
117117

118118
## DeepONet
119119
Proposed by \[cite], the DeepONet generalizes the idea of PCA-NET, by means of *learning* the PCA basis functions of the output space $\mathcal Y$, i.e., $\psi_1,...,\psi_m$ are now NNs. The parameter space is then composed of two distinct set of parameters to be learned: $\theta_\varphi$, the same parameters as the original PCA-NET, and $\theta_\psi$, the parameters for the PCA basis functions of the output space. We will then have:
120-
$$
121-
\begin{flalign}
120+
121+
```math
122+
\begin{align}
122123
\mathcal G^\dagger_{\text{DeepONet}}&(x;\theta)(u)=\sum_{j=0}^m\varphi_j(\mathrm Lx;\theta_\varphi)\psi_j(u;\theta_\psi) \ \ \ \ \forall\ x\in\mathcal X \ \ \ \ u\in D_u
123-
\end{flalign}
124-
$$
124+
\end{align}
125+
```
126+
125127
## Overcoming the curse of dimensionality
126128
One of the big problems of these approaches is the fact $L_\mathcal Y$ is a linear combination of the {$\psi_j$}. This leads to the need of an doubly exponential growth in the amount of data, when compared to $n$ (the size of the PCA basis functions of the input space $\mathcal X$), to achieve convergence \[cite]. To overcome this difficulty, we're going to generalize this idea of linear approximation of operators to the non-linear case.
127129

@@ -166,14 +168,19 @@ This is basically what defines the Fourier Neural operator: the Neural Operator
166168
# Galerkin Transformer
167169
-- TODO --
168170
Papers to cite:
171+
169172
πŸ“– S. Cao: Choose a Transformer: Fourier or Galerkin (Available [here](https://arxiv.org/abs/2105.14995))
173+
170174
πŸ“– X. Wang: Exploring Efficient Partial Differential Equation Solution Using Speed Galerkin Transformer (Available [here](https://ieeexplore.ieee.org/abstract/document/10793230))
175+
171176
πŸ“– H. Wu: Transolver: A Fast Transformer Solver for PDEs on General Geometries (Available [here](https://arxiv.org/pdf/2402.02366))
172177

173178

174179
# Large-scale surrogates
175180
-- TODO --
176181
Papers to cite:
182+
177183
πŸ“– T. Grady: Model-Parallel Fourier Neural Operators as Learned Surrogates for Large-Scale Parametric PDEs (Available [here](https://www.sciencedirect.com/science/article/pii/S0098300423001061?casa_token=49-AswW96sUAAAAA:rgUui8eHQVtqwTAn4uzR4-s9i5_ThGu0Fl3m_GI6i5xgYUMbHpgjwkJYgW9l6VFGPdCCjA_LUck))
184+
178185
πŸ“– L. Meyer: Training Deep Surrogate Models with Large Scale Online Learning (Available [here](https://proceedings.mlr.press/v202/meyer23b/meyer23b.pdf))
179186

0 commit comments

Comments
Β (0)