Skip to content

Commit a71f777

Browse files
author
Pedro Paulo
committed
Class 12: 10/20 checkpoint
1 parent 35eece7 commit a71f777

File tree

1 file changed

+20
-20
lines changed

1 file changed

+20
-20
lines changed

class12/class12.md

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -39,35 +39,35 @@ This brings a concept (that we'll try to keep with our definition of Neural Oper
3939

4040
# Operator basics
4141
Let the operator $\mathcal G: \mathcal X \rightarrow \mathcal Y$, where $\mathcal X$ and are separable Banach spaces (mathematical way of saying that $\mathcal X$ and $\mathcal Y$ are spaces of functions) of vector-valued functions:
42-
$$
43-
\begin{flalign}
44-
\mathcal X&=\{x: D\rightarrow \mathbb R\}, \ \ \ D \subseteq\mathbb R^d
42+
```math
43+
\begin{align}
44+
\mathcal X=\{x: D\rightarrow \mathbb R\}, \ \ \ D \subseteq\mathbb R^d
4545
\\
46-
\mathcal Y&=\{y: D\rightarrow \mathbb R\}
47-
\end{flalign}
48-
$$
46+
\mathcal Y=\{y: D\rightarrow \mathbb R\}
47+
\end{align}
48+
```
4949
For example, $D$ is a cut plane of a biological tissue ($D \subseteq\mathbb R^2$) under the application of electric fields, and $x\in\mathcal X$ and $y\in\mathcal Y$ are temperatures before and after the application of said fields. The operator $\mathcal G$ is given by:
50-
$$
50+
```math
5151
\rho c_p\partial_tT =\nabla \cdot(k\nabla T) + \sigma|E|^2-Q
52-
$$
52+
```
5353
where
54-
$$
55-
\begin{flalign}
56-
\rho &\text{ is the tissue's density}
54+
```math
55+
\begin{align}
56+
\rho \text{ is the tissue's density}
5757
\\
58-
c_p &\text{ is the tissue's heat capacity}
58+
c_p \text{ is the tissue's heat capacity}
5959
\\
60-
T &\text{ is the temperature distribution on the tissue}
60+
T \text{ is the temperature distribution on the tissue}
6161
\\
62-
k &\text{ is the tissue's thermal conductivity}
62+
k \text{ is the tissue's thermal conductivity}
6363
\\
6464
\sigma &\text{ is the tissue's electrical conductivity}
6565
\\
66-
E &\text{ is the electric field distribution}
66+
E \text{ is the electric field distribution}
6767
\\
68-
Q &\text{ is the heat transfer, from blood/metabolism}
69-
\end{flalign}
70-
$$
68+
Q \text{ is the heat transfer, from blood/metabolism}
69+
\end{align}
70+
```
7171
This is one specific case of an operator, but any PDE can be thought as an operator.
7272

7373
## Approximations
@@ -84,9 +84,9 @@ Let:
8484
- $\mathcal X$ and $\mathcal Y$ be separable Banach spaces.
8585
- $\mathcal G: \mathcal X \rightarrow \mathcal Y$ be continuous.
8686
For any $U\subset \mathcal X$ compact and $\epsilon > 0$, *there exists* continuous, linear maps $K_\mathcal X:\mathcal X \rightarrow \mathbb R^n$, $L_\mathcal Y:\mathcal Y \rightarrow \mathbb R^m$, and $\varphi: \mathbb R^n \rightarrow \mathbb R^m$ such that:
87-
$$
87+
```math
8888
\sup_{u\in U} \| \mathcal G(u)-\mathcal G^\dagger(u)\|_\mathcal Y < \epsilon
89-
$$
89+
```
9090
Average approximation:
9191
Let:
9292
- $\mathcal X$ be separable Banach spaces, and $\mu \in \mathcal P(\mathcal X)$ be a probability measure in $\mathcal X$.

0 commit comments

Comments
 (0)