|
| 1 | +import torch.utils.data as data |
| 2 | +import torchvision as tv |
| 3 | +from lightning import Trainer |
| 4 | +from lightning.pytorch.callbacks import ModelCheckpoint |
| 5 | +from litmodels import upload_model |
| 6 | +from sample_model import LitAutoEncoder |
| 7 | + |
| 8 | +if __name__ == "__main__": |
| 9 | + dataset = tv.datasets.MNIST(".", download=True, transform=tv.transforms.ToTensor()) |
| 10 | + train, val = data.random_split(dataset, [55000, 5000]) |
| 11 | + |
| 12 | + autoencoder = LitAutoEncoder() |
| 13 | + # Save the best model based on validation loss |
| 14 | + checkpoint_callback = ModelCheckpoint( |
| 15 | + monitor="val_loss", # Metric to monitor |
| 16 | + save_top_k=1, # Only save the best model (use -1 to save all) |
| 17 | + mode="min", # 'min' for loss, 'max' for accuracy |
| 18 | + save_last=True, # Additionally save the last checkpoint |
| 19 | + dirpath="my_checkpoints/", # Directory to save checkpoints |
| 20 | + filename="{epoch:02d}-{val_loss:.2f}", # Custom checkpoint filename |
| 21 | + ) |
| 22 | + |
| 23 | + trainer = Trainer( |
| 24 | + max_epochs=2, |
| 25 | + callbacks=[checkpoint_callback], |
| 26 | + ) |
| 27 | + trainer.fit( |
| 28 | + autoencoder, |
| 29 | + data.DataLoader(train, batch_size=256), |
| 30 | + data.DataLoader(val, batch_size=256), |
| 31 | + ) |
| 32 | + print(f"last: {vars(checkpoint_callback)}") |
| 33 | + upload_model(path=checkpoint_callback.last_model_path, name="jirka/kaggle/lit-auto-encoder-simple") |
0 commit comments