|
| 1 | +""" |
| 2 | +This script is meant to be the simplest possible starting point for full finetuning a GPT model using lightning fabric with code (not CLI). |
| 3 | +
|
| 4 | +- no checkpoints |
| 5 | +- no out dir |
| 6 | +- no precision |
| 7 | +- no resume |
| 8 | +- no train/eval args (or any args in general) |
| 9 | +- no logger (only to terminal) |
| 10 | +- no grad accumulation |
| 11 | +and no other fancy stuff. |
| 12 | +
|
| 13 | +To add all the above stuff, you can slowly add them in yourself by looking at the code in litgpt/finetune/full.py or the docs for litgpt/fabric. |
| 14 | +""" |
| 15 | + |
| 16 | +import os |
| 17 | + |
| 18 | +import lightning as L |
| 19 | +import torch |
| 20 | +import torch.nn as nn |
| 21 | + |
| 22 | +from litgpt.data import Alpaca |
| 23 | +from litgpt.model import GPT, Config |
| 24 | +from litgpt.tokenizer import Tokenizer |
| 25 | +from litgpt.utils import num_parameters |
| 26 | + |
| 27 | +# training params/args |
| 28 | +SEED = 1337 |
| 29 | +MODEL_NAME = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T" # try also "stabilityai/stablelm-base-alpha-3b"! |
| 30 | +BATCH_SIZE = 4 |
| 31 | +LR_WARMUP_STEPS = 100 |
| 32 | +MAX_STEPS = 601 |
| 33 | + |
| 34 | + |
| 35 | +def validate(model, val_dataloader): |
| 36 | + model.eval() |
| 37 | + loss = 0 |
| 38 | + with torch.no_grad(): |
| 39 | + for batch in val_dataloader: |
| 40 | + input_ids, targets = batch["input_ids"], batch["labels"] |
| 41 | + logits = model(input_ids) |
| 42 | + logits = logits.reshape(-1, logits.size(-1)) |
| 43 | + targets = targets.reshape(-1) |
| 44 | + loss += nn.functional.cross_entropy(logits[..., :-1, :], targets[..., 1:]) |
| 45 | + fabric.print(f"Validation loss: {loss/len(val_dataloader)}") |
| 46 | + |
| 47 | + |
| 48 | +def train(fabric, model, optimizer, scheduler, train_dataloader, val_dataloader): |
| 49 | + for iter_num, batch in enumerate(train_dataloader): |
| 50 | + input_ids, targets = batch["input_ids"], batch["labels"] |
| 51 | + |
| 52 | + # get model preds (logits) |
| 53 | + logits = model(input_ids) |
| 54 | + logits = logits.reshape(-1, logits.size(-1)) |
| 55 | + |
| 56 | + # get loss |
| 57 | + targets = targets.reshape(-1) |
| 58 | + loss = nn.functional.cross_entropy(logits[..., :-1, :], targets[..., 1:]) |
| 59 | + |
| 60 | + # update weights |
| 61 | + fabric.backward(loss) |
| 62 | + optimizer.step() |
| 63 | + optimizer.zero_grad() |
| 64 | + scheduler.step() |
| 65 | + |
| 66 | + # print train loss every 100 steps |
| 67 | + if iter_num % 100 == 0 or iter_num == 0: |
| 68 | + fabric.print(f"Train iter {iter_num} - loss {loss}") |
| 69 | + |
| 70 | + # validate every 300 steps |
| 71 | + if iter_num % 300 == 0 or iter_num == 0: |
| 72 | + validate(model, val_dataloader) |
| 73 | + model.train() |
| 74 | + iter_num += 1 |
| 75 | + |
| 76 | + if iter_num >= MAX_STEPS: |
| 77 | + break |
| 78 | + |
| 79 | + |
| 80 | +def main(fabric): |
| 81 | + fabric.seed_everything(SEED) |
| 82 | + |
| 83 | + # setup data, make tokenizer and make dataloaders |
| 84 | + data = Alpaca() |
| 85 | + tokenizer = Tokenizer(checkpoint_dir=f"checkpoints/{MODEL_NAME}") |
| 86 | + data.connect(tokenizer=tokenizer, batch_size=BATCH_SIZE, max_seq_length=1024) |
| 87 | + data.setup() |
| 88 | + train_dataloader = data.train_dataloader() |
| 89 | + val_dataloader = data.val_dataloader() |
| 90 | + train_dataloader, val_dataloader = fabric.setup_dataloaders(train_dataloader, val_dataloader) |
| 91 | + |
| 92 | + # print how many steps in an epoch |
| 93 | + fabric.print(f"Steps in an epoch: {len(train_dataloader)}") |
| 94 | + |
| 95 | + # setup model |
| 96 | + config = Config.from_file(f"checkpoints/{MODEL_NAME}/model_config.yaml") |
| 97 | + model = GPT(config) |
| 98 | + fabric.print(f"Number of trainable parameters: {num_parameters(model, requires_grad=True):,}") |
| 99 | + model = fabric.setup(model) |
| 100 | + |
| 101 | + # setup optimizer |
| 102 | + optimizer = torch.optim.AdamW(model.parameters(), lr=3e-3, weight_decay=0.02, betas=(0.9, 0.95)) |
| 103 | + optimizer = fabric.setup_optimizers(optimizer) |
| 104 | + |
| 105 | + # setup lr scheduler |
| 106 | + scheduler1 = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda step: step / LR_WARMUP_STEPS) |
| 107 | + scheduler2 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=(MAX_STEPS - LR_WARMUP_STEPS)) |
| 108 | + scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, [scheduler1, scheduler2], milestones=[LR_WARMUP_STEPS]) |
| 109 | + |
| 110 | + # Start training!!! |
| 111 | + train(fabric, model, optimizer, scheduler, train_dataloader, val_dataloader) |
| 112 | + |
| 113 | + |
| 114 | +if __name__ == "__main__": |
| 115 | + # check that the model exists (downloaded to ./checkpoints/) |
| 116 | + if not os.path.exists(f"checkpoints/{MODEL_NAME}"): |
| 117 | + print(f"Model {MODEL_NAME} not found. Please download it using `litgpt download --repo {MODEL_NAME}`") |
| 118 | + exit() |
| 119 | + |
| 120 | + ### Setup and launch |
| 121 | + fabric = L.Fabric(devices="auto", strategy="auto") |
| 122 | + fabric.launch(main) |
0 commit comments