@@ -14,7 +14,7 @@ Common use cases
14
14
15
15
.. customcalloutitem ::
16
16
:description: Learn to train Lightning models on the cloud
17
- :header: Cloud training
17
+ :header: Cloud Training
18
18
:button_link: clouds/cloud_training.html
19
19
:card_style: text-container-small
20
20
@@ -26,7 +26,7 @@ Common use cases
26
26
27
27
.. customcalloutitem ::
28
28
:description: Learn to train on your university or company's cluster
29
- :header: Cluster training
29
+ :header: Cluster Training
30
30
:button_link: clouds/cluster.html
31
31
:card_style: text-container-small
32
32
@@ -38,13 +38,13 @@ Common use cases
38
38
39
39
.. customcalloutitem ::
40
40
:description: Save time and money by training until key metrics stop improving or time has elapsed
41
- :header: Early stopping
41
+ :header: Early Stopping
42
42
:button_link: common/early_stopping.html
43
43
:card_style: text-container-small
44
44
45
45
.. customcalloutitem ::
46
46
:description: Here you'll find the latest SOTA training techniques such as SWA, accumulated gradients, etc...
47
- :header: Effective training techniques
47
+ :header: Effective Training Techniques
48
48
:button_link: advanced/training_tricks.html
49
49
:card_style: text-container-small
50
50
@@ -56,13 +56,13 @@ Common use cases
56
56
57
57
.. customcalloutitem ::
58
58
:description: Before coding a complex model, use lightning-flash to create a baseline in a few lines of code
59
- :header: Fast baselines
59
+ :header: Fast Baselines
60
60
:button_link: ecosystem/flash.html
61
61
:card_style: text-container-small
62
62
63
63
.. customcalloutitem ::
64
64
:description: Enable fault-tolerant training in clusters/clouds where machines might fail (ie: pre-emtible machines)
65
- :header: Fault-tolerant training
65
+ :header: Fault-Tolerant Training
66
66
:button_link: advanced/fault_tolerant_training.html
67
67
:card_style: text-container-small
68
68
@@ -92,13 +92,13 @@ Common use cases
92
92
93
93
.. customcalloutitem ::
94
94
:description: Use the model registry to mix and match your models and Datamodules
95
- :header: Model and Datamodule registry
95
+ :header: Model and Datamodule Registry
96
96
:button_link: common/lightning_cli.html#multiple-models-and-or-datasets
97
97
:card_style: text-container-small
98
98
99
99
.. customcalloutitem ::
100
100
:description: Train 1TB+ parameter models with these advanced built-in techniques
101
- :header: Model parallelism
101
+ :header: Model Parallelism
102
102
:button_link: advanced/model_parallel.html
103
103
:card_style: text-container-small
104
104
@@ -134,13 +134,13 @@ Common use cases
134
134
135
135
.. customcalloutitem ::
136
136
:description: Work with data on any local or cloud filesystem such as S3 on AWS, GCS on Google Cloud, or ADL on Azure
137
- :header: Remote filesystems
137
+ :header: Remote Filesystems
138
138
:button_link: common/remote_fs.html
139
139
:card_style: text-container-small
140
140
141
141
.. customcalloutitem ::
142
142
:description: Building the next Deepspeed, FSDP or fancy scaling technique? Add them to Lightning here
143
- :header: Strategy registry
143
+ :header: Strategy Registry
144
144
:button_link: advanced/strategy_registry.html
145
145
:card_style: text-container-small
146
146
@@ -152,7 +152,7 @@ Common use cases
152
152
153
153
.. customcalloutitem ::
154
154
:description: Use models training on large datasets to achieve better results when you don't have much data
155
- :header: Transfer learning (finetuning)
155
+ :header: Transfer Learning (finetuning)
156
156
:button_link: advanced/transfer_learning.html
157
157
:card_style: text-container-small
158
158
0 commit comments