@@ -86,29 +86,49 @@ def _do_nothing(*_: Any) -> None:
8686class Fabric :
8787 r"""Fabric accelerates your PyTorch training or inference code with minimal changes required.
8888
89- - Automatic placement of models and data onto the device.
90- - Automatic support for mixed and double precision (smaller memory footprint).
91- - Seamless switching between hardware (CPU, GPU, TPU) and distributed training strategies
92- (data-parallel training, sharded training, etc.).
93- - Automated spawning of processes, no launch utilities required.
94- - Multi-node support.
89+ Features:
90+ - Automatic placement of models and data onto the device.
91+ - Automatic support for mixed and double precision (smaller memory footprint).
92+ - Seamless switching between hardware (CPU, GPU, TPU) and distributed training strategies
93+ (data-parallel training, sharded training, etc.).
94+ - Automated spawning of processes, no launch utilities required.
95+ - Multi-node support.
9596
9697 Args:
9798 accelerator: The hardware to run on. Possible choices are:
9899 ``"cpu"``, ``"cuda"``, ``"mps"``, ``"gpu"``, ``"tpu"``, ``"auto"``.
100+ Defaults to ``"auto"``.
99101 strategy: Strategy for how to run across multiple devices. Possible choices are:
100- ``"dp"``, ``"ddp"``, ``"ddp_spawn"``, ``"deepspeed"``, ``"fsdp"``.
102+ ``"dp"``, ``"ddp"``, ``"ddp_spawn"``, ``"deepspeed"``, ``"fsdp"``, ``"auto"``.
103+ Defaults to ``"auto"``.
101104 devices: Number of devices to train on (``int``), which GPUs to train on (``list`` or ``str``), or ``"auto"``.
102- The value applies per node.
103- num_nodes: Number of GPU nodes for distributed training.
105+ The value applies per node. Defaults to ``"auto"``.
106+ num_nodes: Number of GPU nodes for distributed training. Defaults to ``1``.
104107 precision: Double precision (``"64"``), full precision (``"32"``), half precision AMP (``"16-mixed"``),
105- or bfloat16 precision AMP (``"bf16-mixed"``).
106- plugins: One or several custom plugins
108+ or bfloat16 precision AMP (``"bf16-mixed"``). If ``None``, defaults will be used based on the device.
109+ plugins: One or several custom plugins as a single plugin or list of plugins.
107110 callbacks: A single callback or a list of callbacks. A callback can contain any arbitrary methods that
108111 can be invoked through :meth:`~lightning.fabric.fabric.Fabric.call` by the user.
109112 loggers: A single logger or a list of loggers. See :meth:`~lightning.fabric.fabric.Fabric.log` for more
110113 information.
111114
115+ Example::
116+
117+ # Basic usage
118+ fabric = Fabric(accelerator="gpu", devices=2)
119+
120+ # Set up model and optimizer
121+ model = MyModel()
122+ optimizer = torch.optim.Adam(model.parameters())
123+ model, optimizer = fabric.setup(model, optimizer)
124+
125+ # Training loop
126+ for batch in dataloader:
127+ optimizer.zero_grad()
128+ loss = model(batch)
129+ fabric.backward(loss)
130+ optimizer.step()
131+
112132 """
113133
114134 def __init__ (
@@ -217,9 +237,9 @@ def setup(
217237 r"""Set up a model and its optimizers for accelerated training.
218238
219239 Args:
220- module: A :class:`torch.nn.Module` to set up
221- *optimizers: The optimizer(s) to set up (no optimizers is also possible)
222- scheduler: The learning rate scheduler to set up (no learning rate scheduler is also possible)
240+ module: A :class:`torch.nn.Module` to set up.
241+ *optimizers: The optimizer(s) to set up. Can be zero or more optimizers.
242+ scheduler: An optional learning rate scheduler to set up. Must be provided after optimizers if used.
223243 move_to_device: If set ``True`` (default), moves the model to the correct device. Set this to ``False``
224244 and alternatively use :meth:`to_device` manually.
225245 _reapply_compile: If ``True`` (default), and the model was ``torch.compile``d before, the
@@ -228,8 +248,24 @@ def setup(
228248 FSDP etc.). Set it to ``False`` if compiling DDP/FSDP is causing issues.
229249
230250 Returns:
231- The tuple containing wrapped module, optimizers, and an optional learning rate scheduler,
232- in the same order they were passed in.
251+ If no optimizers are passed, returns the wrapped module. If optimizers are passed, returns a tuple
252+ containing the wrapped module and optimizers, and optionally the scheduler if provided, in the same
253+ order they were passed in.
254+
255+ Note:
256+ For certain strategies like FSDP, you may need to set up the model first using :meth:`setup_module`,
257+ then create the optimizer, and finally set up the optimizer using :meth:`setup_optimizers`.
258+
259+ Example::
260+
261+ # Basic usage
262+ model, optimizer = fabric.setup(model, optimizer)
263+
264+ # With multiple optimizers and scheduler
265+ model, opt1, opt2, scheduler = fabric.setup(model, opt1, opt2, scheduler=scheduler)
266+
267+ # Model only
268+ model = fabric.setup(model)
233269
234270 """
235271 self ._validate_setup (module , optimizers )
@@ -286,15 +322,25 @@ def setup_module(
286322 See also :meth:`setup_optimizers`.
287323
288324 Args:
289- module: A :class:`torch.nn.Module` to set up
325+ module: A :class:`torch.nn.Module` to set up.
290326 move_to_device: If set ``True`` (default), moves the model to the correct device. Set this to ``False``
291327 and alternatively use :meth:`to_device` manually.
292328 _reapply_compile: If ``True`` (default), and the model was ``torch.compile``d before, the
293329 corresponding :class:`~torch._dynamo.OptimizedModule` wrapper will be removed and reapplied with the
294330 same settings after the model was set up by the strategy (e.g., after the model was wrapped by DDP,
295331 FSDP etc.). Set it to ``False`` if compiling DDP/FSDP is causing issues.
332+
296333 Returns:
297- The wrapped model.
334+ The wrapped model as a :class:`~lightning.fabric.wrappers._FabricModule`.
335+
336+ Example::
337+
338+ # Set up model first (useful for FSDP)
339+ model = fabric.setup_module(model)
340+
341+ # Then create and set up optimizer
342+ optimizer = torch.optim.Adam(model.parameters())
343+ optimizer = fabric.setup_optimizers(optimizer)
298344
299345 """
300346 self ._validate_setup_module (module )
@@ -334,10 +380,26 @@ def setup_optimizers(self, *optimizers: Optimizer) -> Union[_FabricOptimizer, tu
334380 ``.setup(model, optimizer, ...)`` instead to jointly set them up.
335381
336382 Args:
337- *optimizers: One or more optimizers to set up.
383+ *optimizers: One or more optimizers to set up. Must provide at least one optimizer.
338384
339385 Returns:
340- The wrapped optimizer(s).
386+ If a single optimizer is passed, returns the wrapped optimizer. If multiple optimizers are passed,
387+ returns a tuple of wrapped optimizers in the same order they were passed in.
388+
389+ Raises:
390+ RuntimeError: If using DeepSpeed or XLA strategies, which require joint model-optimizer setup.
391+ ValueError: If no optimizers are provided.
392+
393+ Note:
394+ This method cannot be used with DeepSpeed or XLA strategies. Use :meth:`setup` instead for those strategies.
395+
396+ Example::
397+
398+ # Single optimizer
399+ optimizer = fabric.setup_optimizers(optimizer)
400+
401+ # Multiple optimizers
402+ opt1, opt2 = fabric.setup_optimizers(opt1, opt2)
341403
342404 """
343405 self ._validate_setup_optimizers (optimizers )
@@ -355,7 +417,8 @@ def setup_dataloaders(
355417 dataloader, call this method individually for each one.
356418
357419 Args:
358- *dataloaders: A single dataloader or a sequence of dataloaders.
420+ *dataloaders: One or more PyTorch :class:`~torch.utils.data.DataLoader` instances to set up.
421+ Must provide at least one dataloader.
359422 use_distributed_sampler: If set ``True`` (default), automatically wraps or replaces the sampler on the
360423 dataloader(s) for distributed training. If you have a custom sampler defined, set this argument
361424 to ``False``.
@@ -364,7 +427,16 @@ def setup_dataloaders(
364427 returned data.
365428
366429 Returns:
367- The wrapped dataloaders, in the same order they were passed in.
430+ If a single dataloader is passed, returns the wrapped dataloader. If multiple dataloaders are passed,
431+ returns a list of wrapped dataloaders in the same order they were passed in.
432+
433+ Example::
434+
435+ # Single dataloader
436+ train_loader = fabric.setup_dataloaders(train_loader)
437+
438+ # Multiple dataloaders
439+ train_loader, val_loader = fabric.setup_dataloaders(train_loader, val_loader)
368440
369441 """
370442 self ._validate_setup_dataloaders (dataloaders )
@@ -410,18 +482,27 @@ def _setup_dataloader(
410482 return fabric_dataloader
411483
412484 def backward (self , tensor : Tensor , * args : Any , model : Optional [_FabricModule ] = None , ** kwargs : Any ) -> None :
413- r"""Replaces ``loss.backward()`` in your training loop. Handles precision and automatically for you.
485+ r"""Replaces ``loss.backward()`` in your training loop. Handles precision automatically for you.
414486
415487 Args:
416488 tensor: The tensor (loss) to back-propagate gradients from.
417489 *args: Optional positional arguments passed to the underlying backward function.
418- model: Optional model instance for plugins that require the model for backward().
490+ model: Optional model instance for plugins that require the model for backward(). Required when using
491+ DeepSpeed strategy with multiple models.
419492 **kwargs: Optional named keyword arguments passed to the underlying backward function.
420493
421494 Note:
422495 When using ``strategy="deepspeed"`` and multiple models were set up, it is required to pass in the
423496 model as argument here.
424497
498+ Example::
499+
500+ loss = criterion(output, target)
501+ fabric.backward(loss)
502+
503+ # With DeepSpeed and multiple models
504+ fabric.backward(loss, model=model)
505+
425506 """
426507 module = model ._forward_module if model is not None else model
427508 module , _ = _unwrap_compiled (module )
@@ -459,17 +540,29 @@ def clip_gradients(
459540 Args:
460541 module: The module whose parameters should be clipped.
461542 optimizer: The optimizer referencing the parameters to be clipped.
462- clip_val: If passed, gradients will be clipped to this value.
543+ clip_val: If passed, gradients will be clipped to this value. Cannot be used together with ``max_norm``.
463544 max_norm: If passed, clips the gradients in such a way that the p-norm of the resulting parameters is
464- no larger than the given value.
465- norm_type: The type of norm if `max_norm` was passed. Can be ``'inf'`` for infinity norm.
466- Default is the 2-norm.
545+ no larger than the given value. Cannot be used together with ``clip_val``.
546+ norm_type: The type of norm if `` max_norm` ` was passed. Can be ``'inf'`` for infinity norm.
547+ Defaults to 2-norm.
467548 error_if_nonfinite: An error is raised if the total norm of the gradients is NaN or infinite.
549+ Only applies when ``max_norm`` is used.
468550
469- Return :
551+ Returns :
470552 The total norm of the gradients (before clipping was applied) as a scalar tensor if ``max_norm`` was
471553 passed, otherwise ``None``.
472554
555+ Raises:
556+ ValueError: If both ``clip_val`` and ``max_norm`` are provided, or if neither is provided.
557+
558+ Example::
559+
560+ # Clip by value
561+ fabric.clip_gradients(model, optimizer, clip_val=1.0)
562+
563+ # Clip by norm
564+ total_norm = fabric.clip_gradients(model, optimizer, max_norm=1.0)
565+
473566 """
474567 if clip_val is not None and max_norm is not None :
475568 raise ValueError (
@@ -643,24 +736,37 @@ def no_backward_sync(self, module: _FabricModule, enabled: bool = True) -> Abstr
643736 r"""Skip gradient synchronization during backward to avoid redundant communication overhead.
644737
645738 Use this context manager when performing gradient accumulation to speed up training with multiple devices.
646-
647- Example::
648-
649- # Accumulate gradient 8 batches at a time
650- with fabric.no_backward_sync(model, enabled=(batch_idx % 8 != 0)):
651- output = model(input)
652- loss = ...
653- fabric.backward(loss)
654- ...
655-
656- For those strategies that don't support it, a warning is emitted. For single-device strategies, it is a no-op.
657739 Both the model's ``.forward()`` and the ``fabric.backward()`` call need to run under this context.
658740
659741 Args:
660- module: The module for which to control the gradient synchronization.
742+ module: The module for which to control the gradient synchronization. Must be a module that was
743+ set up with :meth:`setup` or :meth:`setup_module`.
661744 enabled: Whether the context manager is enabled or not. ``True`` means skip the sync, ``False`` means do not
662745 skip.
663746
747+ Returns:
748+ A context manager that controls gradient synchronization.
749+
750+ Raises:
751+ TypeError: If the module was not set up with Fabric first.
752+
753+ Note:
754+ For strategies that don't support gradient sync control, a warning is emitted and the context manager
755+ becomes a no-op. For single-device strategies, it is always a no-op.
756+
757+ Example::
758+
759+ # Accumulate gradients over 8 batches
760+ for batch_idx, batch in enumerate(dataloader):
761+ with fabric.no_backward_sync(model, enabled=(batch_idx % 8 != 0)):
762+ output = model(batch)
763+ loss = criterion(output, target)
764+ fabric.backward(loss)
765+
766+ if batch_idx % 8 == 0:
767+ optimizer.step()
768+ optimizer.zero_grad()
769+
664770 """
665771 module , _ = _unwrap_compiled (module )
666772 if not isinstance (module , _FabricModule ):
@@ -726,13 +832,28 @@ def save(
726832 This method must be called on all processes!
727833
728834 Args:
729- path: A path to where the file(s) should be saved
835+ path: A path to where the file(s) should be saved.
730836 state: A dictionary with contents to be saved. If the dict contains modules or optimizers, their
731837 state-dict will be retrieved and converted automatically.
732838 filter: An optional dictionary containing filter callables that return a boolean indicating whether the
733839 given item should be saved (``True``) or filtered out (``False``). Each filter key should match a
734840 state key, where its filter will be applied to the ``state_dict`` generated.
735841
842+ Raises:
843+ TypeError: If filter is not a dictionary or contains non-callable values.
844+ ValueError: If filter keys don't match state keys.
845+
846+ Example::
847+
848+ state = {"model": model, "optimizer": optimizer, "epoch": epoch}
849+ fabric.save("checkpoint.pth", state)
850+
851+ # With filter
852+ def param_filter(name, param):
853+ return "bias" not in name # Save only non-bias parameters
854+
855+ fabric.save("checkpoint.pth", state, filter={"model": param_filter})
856+
736857 """
737858 if filter is not None :
738859 if not isinstance (filter , dict ):
@@ -759,7 +880,7 @@ def load(
759880 This method must be called on all processes!
760881
761882 Args:
762- path: A path to where the file is located
883+ path: A path to where the file is located.
763884 state: A dictionary of objects whose state will be restored in-place from the checkpoint path.
764885 If no state is given, then the checkpoint will be returned in full.
765886 strict: Whether to enforce that the keys in `state` match the keys in the checkpoint.
@@ -768,6 +889,16 @@ def load(
768889 The remaining items that were not restored into the given state dictionary. If no state dictionary is
769890 given, the full checkpoint will be returned.
770891
892+ Example::
893+
894+ # Load full checkpoint
895+ checkpoint = fabric.load("checkpoint.pth")
896+
897+ # Load into existing objects
898+ state = {"model": model, "optimizer": optimizer}
899+ remainder = fabric.load("checkpoint.pth", state)
900+ epoch = remainder.get("epoch", 0)
901+
771902 """
772903 unwrapped_state = _unwrap_objects (state )
773904 remainder = self ._strategy .load_checkpoint (path = path , state = unwrapped_state , strict = strict )
@@ -805,18 +936,32 @@ def launch(self, function: Callable[["Fabric"], Any] = _do_nothing, *args: Any,
805936 Args:
806937 function: Optional function to launch when using a spawn/fork-based strategy, for example, when using the
807938 XLA strategy (``accelerator="tpu"``). The function must accept at least one argument, to which
808- the Fabric object itself will be passed.
939+ the Fabric object itself will be passed. If not provided, only process initialization will be performed.
809940 *args: Optional positional arguments to be passed to the function.
810941 **kwargs: Optional keyword arguments to be passed to the function.
811942
812943 Returns:
813944 Returns the output of the function that ran in worker process with rank 0.
814945
815- The ``launch()`` method should only be used if you intend to specify accelerator, devices, and so on in
816- the code (programmatically). If you are launching with the Lightning CLI, ``fabric run ...``, remove
817- ``launch()`` from your code.
946+ Raises:
947+ RuntimeError: If called when script was launched through the CLI.
948+ TypeError: If function is provided but not callable, or if function doesn't accept required arguments.
949+
950+ Note:
951+ The ``launch()`` method should only be used if you intend to specify accelerator, devices, and so on in
952+ the code (programmatically). If you are launching with the Lightning CLI, ``fabric run ...``, remove
953+ ``launch()`` from your code.
954+
955+ The ``launch()`` is a no-op when called multiple times and no function is passed in.
956+
957+ Example::
958+
959+ def train_function(fabric):
960+ model, optimizer = fabric.setup(model, optimizer)
961+ # ... training code ...
818962
819- The ``launch()`` is a no-op when called multiple times and no function is passed in.
963+ fabric = Fabric(accelerator="tpu", devices=8)
964+ fabric.launch(train_function)
820965
821966 """
822967 if _is_using_cli ():
0 commit comments