@@ -58,12 +58,45 @@ Lightning automatically saves a checkpoint for you in your current working direc
5858 # simply by using the Trainer you get automatic checkpointing
5959 trainer = Trainer()
6060
61- To change the checkpoint path use the `default_root_dir ` argument:
61+
62+ Checkpoint save location
63+ ========================
64+
65+ The location where checkpoints are saved depends on whether you have configured a logger:
66+
67+ **Without a logger **, checkpoints are saved to the ``default_root_dir ``:
68+
69+ .. code-block :: python
70+
71+ # saves checkpoints to 'some/path/checkpoints/'
72+ trainer = Trainer(default_root_dir = " some/path/" , logger = False )
73+
74+ **With a logger **, checkpoints are saved to the logger's directory, **not ** to ``default_root_dir ``:
6275
6376.. code-block :: python
6477
65- # saves checkpoints to 'some/path/' at every epoch end
66- trainer = Trainer(default_root_dir = " some/path/" )
78+ from lightning.pytorch.loggers import CSVLogger
79+
80+ # checkpoints will be saved to 'logs/my_experiment/version_0/checkpoints/'
81+ # NOT to 'some/path/checkpoints/'
82+ trainer = Trainer(
83+ default_root_dir = " some/path/" , # This will be ignored for checkpoints!
84+ logger = CSVLogger(" logs" , " my_experiment" )
85+ )
86+
87+ To explicitly control the checkpoint location when using a logger, use the
88+ :class: `~lightning.pytorch.callbacks.ModelCheckpoint ` callback:
89+
90+ .. code-block :: python
91+
92+ from lightning.pytorch.callbacks import ModelCheckpoint
93+
94+ # explicitly set checkpoint directory
95+ checkpoint_callback = ModelCheckpoint(dirpath = " my/custom/checkpoint/path/" )
96+ trainer = Trainer(
97+ logger = CSVLogger(" logs" , " my_experiment" ),
98+ callbacks = [checkpoint_callback]
99+ )
67100
68101
69102----
0 commit comments