@@ -53,6 +53,7 @@ def n(self):
5353 @n .setter
5454 def n (self , value ):
5555 self .__n = value
56+
5657 # track the changes in the `n` value
5758 if not len (self .n_values ) or value != self .n_values [- 1 ]:
5859 self .n_values .append (value )
@@ -158,7 +159,7 @@ def predict_step(self, batch, batch_idx, dataloader_idx=None):
158159 assert not pbar .val_progress_bar .leave
159160 assert trainer .num_sanity_val_batches == expected_sanity_steps
160161 assert pbar .val_progress_bar .total_values == expected_sanity_steps
161- assert pbar .val_progress_bar .n_values == list (range (1 , num_sanity_val_steps + 1 )) * num_dl
162+ assert pbar .val_progress_bar .n_values == list (range (num_sanity_val_steps + 1 )) * num_dl
162163 assert pbar .val_progress_bar .descriptions == [f"Sanity Checking DataLoader { i } : " for i in range (num_dl )]
163164
164165 # fit
@@ -177,7 +178,7 @@ def predict_step(self, batch, batch_idx, dataloader_idx=None):
177178
178179 # check val progress bar total
179180 assert pbar .val_progress_bar .total_values == m
180- assert pbar .val_progress_bar .n_values == list (range (1 , m [0 ] + 1 )) * num_dl
181+ assert pbar .val_progress_bar .n_values == list (range (m [0 ] + 1 )) * num_dl
181182 assert pbar .val_progress_bar .descriptions == [f"Validation DataLoader { i } : " for i in range (num_dl )]
182183 assert not pbar .val_progress_bar .leave
183184
@@ -186,7 +187,7 @@ def predict_step(self, batch, batch_idx, dataloader_idx=None):
186187 trainer .validate (model )
187188 assert trainer .num_val_batches == m
188189 assert pbar .val_progress_bar .total_values == m
189- assert pbar .val_progress_bar .n_values == list (range (1 , m [0 ] + 1 )) * num_dl
190+ assert pbar .val_progress_bar .n_values == list (range (m [0 ] + 1 )) * num_dl
190191 assert pbar .val_progress_bar .descriptions == [f"Validation DataLoader { i } : " for i in range (num_dl )]
191192
192193 # test
@@ -195,7 +196,7 @@ def predict_step(self, batch, batch_idx, dataloader_idx=None):
195196 assert pbar .test_progress_bar .leave
196197 k = trainer .num_test_batches
197198 assert pbar .test_progress_bar .total_values == k
198- assert pbar .test_progress_bar .n_values == list (range (1 , k [0 ] + 1 )) * num_dl
199+ assert pbar .test_progress_bar .n_values == list (range (k [0 ] + 1 )) * num_dl
199200 assert pbar .test_progress_bar .descriptions == [f"Testing DataLoader { i } : " for i in range (num_dl )]
200201 assert pbar .test_progress_bar .leave
201202
@@ -205,7 +206,7 @@ def predict_step(self, batch, batch_idx, dataloader_idx=None):
205206 assert pbar .predict_progress_bar .leave
206207 k = trainer .num_predict_batches
207208 assert pbar .predict_progress_bar .total_values == k
208- assert pbar .predict_progress_bar .n_values == list (range (1 , k [0 ] + 1 )) * num_dl
209+ assert pbar .predict_progress_bar .n_values == list (range (k [0 ] + 1 )) * num_dl
209210 assert pbar .predict_progress_bar .descriptions == [f"Predicting DataLoader { i } : " for i in range (num_dl )]
210211 assert pbar .predict_progress_bar .leave
211212
@@ -359,13 +360,13 @@ def test_tqdm_progress_bar_value_on_colab(tmpdir):
359360@pytest .mark .parametrize (
360361 "train_batches,val_batches,refresh_rate,train_updates,val_updates" ,
361362 [
362- [2 , 3 , 1 , [1 , 2 , 3 , 4 , 5 ], [1 , 2 , 3 ]],
363+ [2 , 3 , 1 , [0 , 1 , 2 , 3 , 4 , 5 ], [0 , 1 , 2 , 3 ]],
363364 [0 , 0 , 3 , None , None ],
364- [1 , 0 , 3 , [1 ], None ],
365- [1 , 1 , 3 , [2 ], [1 ]],
366- [5 , 0 , 3 , [3 , 5 ], None ],
367- [5 , 2 , 3 , [3 , 6 , 7 ], [2 ]],
368- [5 , 2 , 6 , [6 , 7 ], [2 ]],
365+ [1 , 0 , 3 , [0 , 1 ], None ],
366+ [1 , 1 , 3 , [0 , 2 ], [0 , 1 ]],
367+ [5 , 0 , 3 , [0 , 3 , 5 ], None ],
368+ [5 , 2 , 3 , [0 , 3 , 6 , 7 ], [0 , 2 ]],
369+ [5 , 2 , 6 , [0 , 6 , 7 ], [0 , 2 ]],
369370 ],
370371)
371372def test_main_progress_bar_update_amount (
@@ -395,7 +396,7 @@ def test_main_progress_bar_update_amount(
395396 assert progress_bar .val_progress_bar .n_values == val_updates
396397
397398
398- @pytest .mark .parametrize ("test_batches,refresh_rate,updates" , [[ 1 , 3 , [1 ]], [ 3 , 1 , [1 , 2 , 3 ]], [ 5 , 3 , [3 , 5 ]] ])
399+ @pytest .mark .parametrize ("test_batches,refresh_rate,updates" , [( 1 , 3 , [0 , 1 ]), ( 3 , 1 , [0 , 1 , 2 , 3 ]), ( 5 , 3 , [0 , 3 , 5 ]) ])
399400def test_test_progress_bar_update_amount (tmpdir , test_batches : int , refresh_rate : int , updates : list ):
400401 """Test that test progress updates with the correct amount."""
401402 model = BoringModel ()
@@ -566,7 +567,7 @@ def test_tqdm_progress_bar_can_be_pickled():
566567
567568@pytest .mark .parametrize (
568569 ["val_check_interval" , "main_progress_bar_updates" , "val_progress_bar_updates" ],
569- [(4 , [3 , 6 , 9 , 12 , 14 ], [3 , 6 , 7 ]), (0.5 , [3 , 6 , 9 , 12 , 15 , 18 , 21 ], [3 , 6 , 7 ])],
570+ [(4 , [0 , 3 , 6 , 9 , 12 , 14 ], [0 , 3 , 6 , 7 ]), (0.5 , [0 , 3 , 6 , 9 , 12 , 15 , 18 , 21 ], [0 , 3 , 6 , 7 ])],
570571)
571572def test_progress_bar_max_val_check_interval (
572573 tmpdir , val_check_interval , main_progress_bar_updates , val_progress_bar_updates
0 commit comments