|
| 1 | +import math |
| 2 | +from datetime import timedelta |
| 3 | + |
| 4 | +import pytest |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torch.nn.functional as F |
| 8 | +from torch.utils.data import DataLoader, Dataset |
| 9 | + |
| 10 | +from lightning.pytorch import LightningModule, Trainer, seed_everything |
| 11 | +from lightning.pytorch.callbacks import ModelCheckpoint |
| 12 | + |
| 13 | + |
| 14 | +class TinyDataset(Dataset): |
| 15 | + def __init__(self, n: int = 4): |
| 16 | + self.x = torch.arange(n, dtype=torch.float32).view(-1, 1) |
| 17 | + self.y = self.x.clone() |
| 18 | + |
| 19 | + def __len__(self): |
| 20 | + return len(self.x) |
| 21 | + |
| 22 | + def __getitem__(self, idx): |
| 23 | + return self.x[idx], self.y[idx] |
| 24 | + |
| 25 | + |
| 26 | +class TrainMetricModule(LightningModule): |
| 27 | + def __init__(self): |
| 28 | + super().__init__() |
| 29 | + self.layer = nn.Linear(1, 1) |
| 30 | + self._counter = 0.0 |
| 31 | + |
| 32 | + def training_step(self, batch, batch_idx): |
| 33 | + x, y = batch |
| 34 | + y_hat = self.layer(x) |
| 35 | + loss = F.mse_loss(y_hat, y) |
| 36 | + # strictly increasing train metric per step |
| 37 | + self._counter += 1.0 |
| 38 | + self.log("train_score", torch.tensor(self._counter), on_step=True, on_epoch=False, prog_bar=False, logger=True) |
| 39 | + return {"loss": loss} |
| 40 | + |
| 41 | + def validation_step(self, batch, batch_idx): |
| 42 | + pass |
| 43 | + |
| 44 | + def configure_optimizers(self): |
| 45 | + return torch.optim.SGD(self.parameters(), lr=0.01) |
| 46 | + |
| 47 | + |
| 48 | +def _make_loaders(n=4): |
| 49 | + ds = TinyDataset(n=n) |
| 50 | + train_loader = DataLoader(ds, batch_size=2, shuffle=False) |
| 51 | + val_loader = DataLoader(ds, batch_size=2, shuffle=False) |
| 52 | + return train_loader, val_loader |
| 53 | + |
| 54 | + |
| 55 | +def test_model_checkpoint_every_n_train_steps_with_train_metric_saves_at_step(tmp_path): |
| 56 | + """When monitoring a train-step metric, step-interval checkpointing should save at the step boundary (no deferral) |
| 57 | + and best_model_score should match the last train metric value.""" |
| 58 | + seed_everything(123) |
| 59 | + |
| 60 | + train_loader, val_loader = _make_loaders(n=4) |
| 61 | + model = TrainMetricModule() |
| 62 | + |
| 63 | + ckpt = ModelCheckpoint( |
| 64 | + dirpath=tmp_path, |
| 65 | + monitor="train_score", |
| 66 | + mode="max", |
| 67 | + save_top_k=1, |
| 68 | + every_n_train_steps=1, |
| 69 | + train_time_interval=None, |
| 70 | + every_n_epochs=0, |
| 71 | + save_on_train_epoch_end=False, |
| 72 | + save_weights_only=True, |
| 73 | + ) |
| 74 | + |
| 75 | + # 2 batches/epoch, run 2 epochs to have multiple step saves |
| 76 | + trainer = Trainer( |
| 77 | + max_epochs=2, |
| 78 | + accelerator="cpu", |
| 79 | + devices=1, |
| 80 | + callbacks=[ckpt], |
| 81 | + num_sanity_val_steps=0, |
| 82 | + log_every_n_steps=1, |
| 83 | + limit_train_batches=2, |
| 84 | + limit_val_batches=0, # no validation needed for this test |
| 85 | + enable_checkpointing=True, |
| 86 | + enable_model_summary=False, |
| 87 | + logger=False, |
| 88 | + ) |
| 89 | + |
| 90 | + trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=val_loader) |
| 91 | + |
| 92 | + assert ckpt.best_model_score is not None |
| 93 | + # 2 epochs * 2 steps/epoch = 4 steps total; metric increments by 1 each step |
| 94 | + expected = 4.0 |
| 95 | + actual = float(ckpt.best_model_score) |
| 96 | + assert math.isclose(actual, expected, rel_tol=0, abs_tol=1e-6) |
| 97 | + |
| 98 | + |
| 99 | +@pytest.mark.parametrize("val_scores", [[0.2, 0.4, 0.9]]) |
| 100 | +def test_model_checkpoint_time_interval_with_val_metric_defers_until_validation(tmp_path, val_scores): |
| 101 | + """With time-interval-based checkpointing, and a validation-only metric, ensure we don't save using stale metrics |
| 102 | + at step boundaries; saving should occur at validation end.""" |
| 103 | + seed_everything(123) |
| 104 | + |
| 105 | + train_loader, val_loader = _make_loaders(n=4) |
| 106 | + |
| 107 | + model = ValMetricModule(val_scores=val_scores) |
| 108 | + |
| 109 | + ckpt = ModelCheckpoint( |
| 110 | + dirpath=tmp_path, |
| 111 | + monitor="auroc", |
| 112 | + mode="max", |
| 113 | + save_top_k=1, |
| 114 | + every_n_train_steps=0, # disable step-based |
| 115 | + train_time_interval=timedelta(seconds=0), # trigger as often as possible |
| 116 | + every_n_epochs=0, |
| 117 | + save_on_train_epoch_end=False, |
| 118 | + save_weights_only=True, |
| 119 | + ) |
| 120 | + |
| 121 | + trainer = Trainer( |
| 122 | + max_epochs=len(val_scores), |
| 123 | + accelerator="cpu", |
| 124 | + devices=1, |
| 125 | + callbacks=[ckpt], |
| 126 | + num_sanity_val_steps=0, |
| 127 | + log_every_n_steps=1, |
| 128 | + limit_train_batches=2, |
| 129 | + limit_val_batches=1, |
| 130 | + enable_checkpointing=True, |
| 131 | + enable_model_summary=False, |
| 132 | + logger=False, |
| 133 | + ) |
| 134 | + |
| 135 | + trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=val_loader) |
| 136 | + |
| 137 | + assert ckpt.best_model_score is not None |
| 138 | + expected = max(val_scores) |
| 139 | + actual = float(ckpt.best_model_score) |
| 140 | + assert math.isclose(actual, expected, rel_tol=0, abs_tol=1e-6) |
| 141 | + |
| 142 | + |
| 143 | +class ValMetricModule(LightningModule): |
| 144 | + def __init__(self, val_scores: list[float]): |
| 145 | + super().__init__() |
| 146 | + self.layer = nn.Linear(1, 1) |
| 147 | + self._val_scores = [float(s) for s in val_scores] |
| 148 | + |
| 149 | + def training_step(self, batch, batch_idx): |
| 150 | + x, y = batch |
| 151 | + y_hat = self.layer(x) |
| 152 | + loss = F.mse_loss(y_hat, y) |
| 153 | + return {"loss": loss} |
| 154 | + |
| 155 | + def validation_step(self, batch, batch_idx): |
| 156 | + pass |
| 157 | + |
| 158 | + def on_validation_epoch_end(self): |
| 159 | + score = self._val_scores[self.current_epoch] |
| 160 | + self.log("auroc", torch.tensor(score, dtype=torch.float32), prog_bar=False, logger=True) |
| 161 | + |
| 162 | + def configure_optimizers(self): |
| 163 | + return torch.optim.SGD(self.parameters(), lr=0.01) |
| 164 | + |
| 165 | + |
| 166 | +@pytest.mark.parametrize("val_scores", [[0.1, 0.5, 1.0, 3.0]]) |
| 167 | +def test_model_checkpoint_defer_until_next_validation_when_val_every_2_epochs(tmp_path, val_scores): |
| 168 | + """With validation running every 2 epochs, step-triggered saves at the end of non-validation epochs should be |
| 169 | + deferred and then performed at the next validation end when the metric is available.""" |
| 170 | + seed_everything(123) |
| 171 | + |
| 172 | + train_loader, val_loader = _make_loaders(n=4) |
| 173 | + |
| 174 | + model = ValMetricModule(val_scores=val_scores) |
| 175 | + |
| 176 | + ckpt = ModelCheckpoint( |
| 177 | + dirpath=tmp_path, |
| 178 | + monitor="auroc", |
| 179 | + mode="max", |
| 180 | + save_top_k=1, |
| 181 | + every_n_train_steps=2, # end of each epoch |
| 182 | + train_time_interval=None, |
| 183 | + every_n_epochs=0, |
| 184 | + save_on_train_epoch_end=False, |
| 185 | + save_weights_only=True, |
| 186 | + ) |
| 187 | + |
| 188 | + trainer = Trainer( |
| 189 | + max_epochs=len(val_scores), |
| 190 | + accelerator="cpu", |
| 191 | + devices=1, |
| 192 | + callbacks=[ckpt], |
| 193 | + num_sanity_val_steps=0, |
| 194 | + log_every_n_steps=1, |
| 195 | + limit_train_batches=2, |
| 196 | + limit_val_batches=1, |
| 197 | + enable_checkpointing=True, |
| 198 | + enable_model_summary=False, |
| 199 | + logger=False, |
| 200 | + check_val_every_n_epoch=2, # only validate every 2 epochs |
| 201 | + ) |
| 202 | + |
| 203 | + trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=val_loader) |
| 204 | + |
| 205 | + assert ckpt.best_model_score is not None |
| 206 | + expected = max(val_scores) # last/maximum value occurs at final validation epoch |
| 207 | + actual = float(ckpt.best_model_score) |
| 208 | + assert math.isclose(actual, expected, rel_tol=0, abs_tol=1e-6) |
0 commit comments