Skip to content

Commit ebae420

Browse files
rohitgr7lexierule
authored andcommitted
update bug_report model links and notebook (#10665)
1 parent d249060 commit ebae420

File tree

5 files changed

+274
-1426
lines changed

5 files changed

+274
-1426
lines changed

.github/ISSUE_TEMPLATE/bug_report.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -16,11 +16,11 @@ assignees: ''
1616
Please reproduce using the BoringModel!
1717
1818
You can use the following Colab link:
19-
https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report/The_BoringModel.ipynb
19+
https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report/bug_report_model.ipynb
2020
IMPORTANT: has to be public.
2121
2222
or this simple template:
23-
https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report_model.py
23+
https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report/bug_report_model.py
2424
2525
If you could not reproduce using the BoringModel and still think there's a bug, please post here
2626
but remember, bugs with code are fixed faster!
@@ -46,9 +46,9 @@ python collect_env_details.py
4646
You can also fill out the list below manually.
4747
-->
4848

49-
- PyTorch Lightning Version (e.g., 1.3.0):
50-
- PyTorch Version (e.g., 1.8)
51-
- Python version:
49+
- PyTorch Lightning Version (e.g., 1.5.0):
50+
- PyTorch Version (e.g., 1.10):
51+
- Python version (e.g., 3.9):
5252
- OS (e.g., Linux):
5353
- CUDA/cuDNN version:
5454
- GPU models and configuration:

docs/source/advanced/fault_tolerant_training.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ Performance Impacts
134134
-------------------
135135

136136
Fault-tolerant Training was tested on common and worst-case scenarios in order to measure the impact of the internal state tracking on the total training time.
137-
On tiny models like the `BoringModel and RandomDataset <https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report_model.py>`_
137+
On tiny models like the `BoringModel and RandomDataset <https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report/bug_report_model.py>`_
138138
which has virtually no data loading and processing overhead, we noticed up to 50% longer training time with fault tolerance enabled.
139139
In this worst-case scenario, fault-tolerant adds an overhead that is noticeable in comparison to the compute time for dataloading itself.
140140
However, for more realistic training workloads where data loading and preprocessing is more expensive, the constant overhead that fault tolerance adds becomes less noticeable or not noticeable at all.

0 commit comments

Comments
 (0)